零基础入门深度学习(五):长短时记忆网络

简介:

在上一篇文章《零基础入门深度学习(4):循环神经网络》中,我们介绍了循环神经网络以及它的训练算法。我们也介绍了循环神经网络很难训练的原因,这导致了它在实际应用中,很难处理长距离的依赖。在本文中,我们将介绍一种改进之后的循环神经网络:长短时记忆网络(Long Short Term Memory Network, LSTM),它成功地解决了原始循环神经网络的缺陷,成为当前最流行的RNN,在语音识别、图片描述、自然语言处理等许多领域中成功应用。

 

但不幸的一面是,LSTM的结构很复杂,因此,我们需要花上一些力气,才能把LSTM以及它的训练算法弄明白。在搞清楚LSTM之后,我们再介绍一种LSTM的变体:GRU (Gated Recurrent Unit)。 它的结构比LSTM简单,而效果却和LSTM一样好,因此,它正在逐渐流行起来。最后,我们仍然会动手实现一个LSTM。

 

长短时记忆网络是啥

 

我们首先了解一下长短时记忆网络产生的背景。回顾一下《零基础入门深度学习(4):循环神经网络》中推导的,误差项沿时间反向传播的公式:

 

20170120102242174.jpg

 

0?wx_fmt=png

 

梯度消失到底意味着什么?在《零基础入门深度学习(4):循环神经网络》中我们已证明,权重数组W最终的梯度是各个时刻的梯度之和,即:

 

20170120102327200.jpg

 

假设某轮训练中,各时刻的梯度以及最终的梯度之和如下图:

 

20170120102336905.jpg

 

我们就可以看到,从上图的t-3时刻开始,梯度已经几乎减少到0了。那么,从这个时刻开始再往之前走,得到的梯度(几乎为零)就不会对最终的梯度值有任何贡献,这就相当于无论t-3时刻之前的网络状态h是什么,在训练中都不会对权重数组W的更新产生影响,也就是网络事实上已经忽略了t-3时刻之前的状态。这就是原始RNN无法处理长距离依赖的原因。

 

既然找到了问题的原因,那么我们就能解决它。从问题的定位到解决,科学家们大概花了7、8年时间。终于有一天,Hochreiter和Schmidhuber两位科学家发明出长短时记忆网络,一举解决这个问题。

 

其实,长短时记忆网络的思路比较简单。原始RNN的隐藏层只有一个状态,即h,它对于短期的输入非常敏感。那么,假如我们再增加一个状态,即c,让它来保存长期的状态,那么问题不就解决了么?如下图所示:

 

20170120102344746.jpg

 

新增加的状态c,称为单元状态(cell state)。我们把上图按照时间维度展开:

 

20170120102350844.jpg

 

20170120102404680.jpg

 

LSTM的关键,就是怎样控制长期状态c。在这里,LSTM的思路是使用三个控制开关。第一个开关,负责控制继续保存长期状态c;第二个开关,负责控制把即时状态输入到长期状态c;第三个开关,负责控制是否把长期状态c作为当前的LSTM的输出。三个开关的作用如下图所示:

 

20170120102357570.jpg

 

接下来,我们要描述一下,输出h和单元状态c的具体计算方法。

 

长短时记忆网络的前向计算

 

前面描述的开关是怎样在算法中实现的呢?这就用到了门(gate)的概念。门实际上就是一层全连接层,它的输入是一个向量,输出是一个0到1之间的实数向量。假设W是门的权重向量,是偏置项,那么门可以表示为:

 

20170120102412924.jpg
 

我们先来看一下遗忘门:

 

20170120102418755.jpg

 

下图显示了遗忘门的计算:

 

20170120102431365.jpg

 

接下来看看输入门:

 

0?wx_fmt=png

 

上式中,Wi是输入门的权重矩阵,bi是输入门的偏置项。下图表示了输入门的计算:

 

20170120102437154.jpg

 

20170120102452944.jpg

 

20170120102459680.jpg

 

20170120102507486.jpg

 

20170120102514987.jpg

 

20170120102522758.jpg

 

下图表示输出门的计算:

 

20170120102529274.jpg

 

LSTM最终的输出,是由输出门和单元状态共同确定的:

 

20170120102538213.jpg

 

下图表示LSTM最终输出的计算:

 

20170120102545569.jpg

 

式1到式6就是LSTM前向计算的全部公式。至此,我们就把LSTM前向计算讲完了。

 

长短时记忆网络的训练

 

熟悉我们这个系列文章的同学都清楚,训练部分往往比前向计算部分复杂多了。LSTM的前向计算都这么复杂,那么,可想而知,它的训练算法一定是非常非常复杂的。现在只有做几次深呼吸,再一头扎进公式海洋吧。

 

LSTM训练算法框架

 

LSTM的训练算法仍然是反向传播算法,对于这个算法,我们已经非常熟悉了。主要有下面三个步骤:

 

20170120102553471.jpg
 

关于公式和符号的说明

 

首先,我们对推导中用到的一些公式、符号做一下必要的说明。

 

接下来的推导中,我们设定gate的激活函数为sigmoid函数,输出的激活函数为tanh函数。他们的导数分别为:

 

20170120102631891.jpg

 

从上面可以看出,sigmoid和tanh函数的导数都是原函数的函数。这样,我们一旦计算原函数的值,就可以用它来计算出导数的值。

 

20170120102640446.jpg
 

20170120102648726.jpg

 

20170120102654306.jpg

 

误差项沿时间的反向传递

 

20170120102702390.jpg

 

下面,我们要把式7中的每个偏导数都求出来。根据式6,我们可以求出:

 

20170120102711267.jpg

 

根据式4,我们可以求出:

 

20170120102719263.jpg

 

因为:

 

20170120102726803.jpg

 

我们很容易得出:

 

20170120102733104.jpg

 

将上述偏导数带入到式7,我们得到:

 

20170120102740383.jpg
 

式8到式12就是将误差沿时间反向传播一个时刻的公式。有了它,我们可以写出将误差项向前传递到任意k时刻的公式:

 

20170120102749273.jpg

 

将误差项传递到上一层

 

我们假设当前为第l层,定义l-1层的误差项是误差函数对l-1层加权输入的导数,即:

 

20170120102755660.jpg
 

20170120102801836.jpg

 

式14就是将误差传递到上一层的公式。

 

权重梯度的计算

 

对于20170120102811591.jpg的权重梯度,我们知道它的梯度是各个时刻梯度之和(证明过程请参考文章《零基础入门深度学习(4) :循环神经网络》),我们首先求出它们在t时刻的梯度,然后再求出他们最终的梯度。

 

我们已经求得了误差项20170120102820595.jpg,很容易求出t时刻的20170120102828248.jpg

 

20170120102836552.jpg

 

将各个时刻的梯度加在一起,就能得到最终的梯度:

 

20170120102845627.jpg

 

对于偏置项20170120102855503.jpg的梯度,也是将各个时刻的梯度加在一起。下面是各个时刻的偏置项梯度:

 

20170120102903516.jpg

 

下面是最终的偏置项梯度,即将各个时刻的偏置项梯度加在一起:

 

20170120102912856.jpg

 

对于20170120102920732.jpg的权重梯度,只需要根据相应的误差项直接计算即可:

 

20170120104010449.jpg

 

以上就是LSTM的训练算法的全部公式。因为这里面存在很多重复的模式,仔细看看,会发觉并不是太复杂。

 

当然,LSTM存在着相当多的变体,读者可以在互联网上找到很多资料。因为大家已经熟悉了基本LSTM的算法,因此理解这些变体比较容易,因此本文就不再赘述了。

 

长短时记忆网络的实现

 

在下面的实现中,LSTMLayer的参数包括输入维度、输出维度、隐藏层维度,单元状态维度等于隐藏层维度。gate的激活函数为sigmoid函数,输出的激活函数为tanh。

 

激活函数的实现

 

我们先实现两个激活函数:sigmoid和tanh。

 

20170120102952564.jpg

 

LSTM初始化

 

和前两篇文章代码架构一样,我们把LSTM的实现放在LstmLayer类中。

 

根据LSTM前向计算和方向传播算法,我们需要初始化一系列矩阵和向量。这些矩阵和向量有两类用途,一类是用于保存模型参数,例如20170120103003581.jpg;另一类是保存各种中间计算结果,以便于反向传播算法使用,它们包括20170120103011454.jpg,以及各个权重对应的梯度。

 

在构造函数的初始化中,只初始化了与forward计算相关的变量,与backward相关的变量没有初始化。这是因为构造LSTM对象的时候,我们还不知道它未来是用于训练(既有forward又有backward)还是推理(只有forward)。

 

20170120103024683.jpg

 

20170120103033604.jpg
 

前向计算的实现

 

forward方法实现了LSTM的前向计算:

 

20170120103044166.jpg
 

从上面的代码我们可以看到,门的计算都是相同的算法,而门和的计算仅仅是激活函数不同。因此我们提出了calc_gate方法,这样减少了很多重复代码。

 

反向传播算法的实现

 

backward方法实现了LSTM的反向传播算法。需要注意的是,与backword相关的内部状态变量是在调用backward方法之后才初始化的。这种延迟初始化的一个好处是,如果LSTM只是用来推理,那么就不需要初始化这些变量,节省了很多内存。

 

20170120103052855.jpg

 

算法主要分成两个部分,一部分使计算误差项:

 

20170120103101795.jpg

20170120103111822.jpg

 

另一部分是计算梯度:

 

20170120103121702.jpg

20170120103130106.jpg

 

梯度下降算法的实现

 

下面是用梯度下降算法来更新权重:

 20170120103142948.jpg
 

梯度检查的实现

 

和RecurrentLayer一样,为了支持梯度检查,我们需要支持重置内部状态:

 

20170120103150104.jpg

  

最后,是梯度检查的代码:

 

20170120103159657.jpg

20170120103206294.jpg

 

我们只对做了检查,读者可以自行增加对其他梯度的检查。下面是某次梯度检查的结果:

 

20170120103214868.jpg

 

GRU

 

前面我们讲了一种普通的LSTM,事实上LSTM存在很多变体,许多论文中的LSTM都或多或少的不太一样。在众多的LSTM变体中,GRU (Gated Recurrent Unit)也许是最成功的一种。它对LSTM做了很多简化,同时却保持着和LSTM相同的效果。因此,GRU最近变得越来越流行。

 

GRU对LSTM做了两个大改动:

 

  1. 将输入门、遗忘门、输出门变为两个门:更新门(Update Gate)Zt和重置门(Reset Gate)rt。

  2. 将单元状态与输出合并为一个状态:h。

 

GRU的前向计算公式为:

 

20170120103225750.jpg

 

下图是GRU的示意图:

 

20170120103232406.jpg

 

GRU的训练算法比LSTM简单一些,留给读者自行推导,本文就不再赘述了。

 

小结

 

至此,LSTM——也许是结构最复杂的一类神经网络——就讲完了,相信拿下前几篇文章的读者们搞定这篇文章也不在话下吧!现在我们已经了解循环神经网络和它最流行的变体——LSTM,它们都可以用来处理序列。但是,有时候仅仅拥有处理序列的能力还不够,还需要处理比序列更为复杂的结构(比如树结构),这时候就需要用到另外一类网络:递归神经网络(Recursive Neural Network),巧合的是,它的缩写也是RNN。

原文发布时间为:2011-01-20

本文来自云栖社区合作伙伴DBAplus

相关文章
|
5天前
|
机器学习/深度学习 运维 Python
python深度学习实现自编码器Autoencoder神经网络异常检测心电图ECG时间序列
python深度学习实现自编码器Autoencoder神经网络异常检测心电图ECG时间序列
14 0
|
1天前
|
机器学习/深度学习 自动驾驶 安全
基于深度学习的图像识别技术在自动驾驶系统中的应用网络安全与信息安全:防御前线的关键技术与意识
【4月更文挑战第30天】随着人工智能技术的飞速发展,深度学习已成为推动多个技术领域革新的核心力量。特别是在图像识别领域,深度学习模型已展现出超越传统算法的性能。在自动驾驶系统中,准确的图像识别是确保行车安全和高效导航的基础。本文将探讨深度学习在自动驾驶中图像识别的应用,分析关键技术挑战,并提出未来的发展方向。
|
2天前
|
机器学习/深度学习 算法 计算机视觉
m基于Yolov2深度学习网络的智能零售柜商品识别系统matlab仿真,带GUI界面
MATLAB 2022a中展示了YOLOv2目标检测算法的仿真结果,包括多张检测图像。YOLOv2是实时检测算法,由卷积层和全连接层构成,输出张量包含边界框坐标和类别概率。损失函数由三部分组成。程序使用75%的数据进行训练,剩余25%作为测试集。通过ResNet-50预训练模型构建YOLOv2网络,并用SGDM优化器进行训练。训练完成后,保存模型为`model.mat`。
15 2
|
2天前
|
机器学习/深度学习 数据可视化 TensorFlow
Python中TensorFlow的长短期记忆神经网络(LSTM)、指数移动平均法预测股票市场和可视化
Python中TensorFlow的长短期记忆神经网络(LSTM)、指数移动平均法预测股票市场和可视化
10 0
|
3天前
|
机器学习/深度学习 算法 TensorFlow
TensorFlow 2keras开发深度学习模型实例:多层感知器(MLP),卷积神经网络(CNN)和递归神经网络(RNN)
TensorFlow 2keras开发深度学习模型实例:多层感知器(MLP),卷积神经网络(CNN)和递归神经网络(RNN)
|
5天前
|
机器学习/深度学习 数据可视化 数据挖掘
【视频】少样本图像分类?迁移学习、自监督学习理论和R语言CNN深度学习卷积神经网络实例
【视频】少样本图像分类?迁移学习、自监督学习理论和R语言CNN深度学习卷积神经网络实例
12 1
|
5天前
|
机器学习/深度学习 编解码 算法
R语言用FNN-LSTM假近邻长短期记忆人工神经网络模型进行时间序列深度学习预测4个案例
R语言用FNN-LSTM假近邻长短期记忆人工神经网络模型进行时间序列深度学习预测4个案例
10 0
|
6天前
|
机器学习/深度学习 算法 计算机视觉
m基于Yolov2深度学习网络的人体喝水行为视频检测系统matlab仿真,带GUI界面
MATLAB 2022a中使用YOLOv2算法对avi视频进行人体喝水行为检测,结果显示成功检测到目标。该算法基于全卷积网络,通过特征提取、锚框和损失函数优化实现。程序首先打乱并分割数据集,利用预训练的ResNet-50和YOLOv2网络结构进行训练,最后保存模型。
17 5
|
4天前
|
网络协议 算法 Linux
【Linux】深入探索:Linux网络调试、追踪与优化
【Linux】深入探索:Linux网络调试、追踪与优化
|
1天前
|
JSON 网络协议 Linux
Linux ip命令:网络的瑞士军刀
【4月更文挑战第25天】
7 1