一、Multi-Range Read(MRR)
1、MRR优化原理
1)在没有使用MRR时,MySQL处理思路的伪代码
#SQL
select * from tb where key_column=xx ;
#伪代码
for each row r in R do
if r satisfy the where condition
then output the tuple <r>
#处理流程
1.根据索引过滤,获取到满足条件的记录的结果集<r>
2.遍历结果集通过主键进行回表,此时为离散扫描,返回客户端需要的字段信息
AI 代码解读
2)MRR算法实现伪代码处理流程
#SQL
select * from tb where key_column=xx ;
#伪代码
for each row r in R do
if r satisfy the where condition
then output the tuple <r> order by rowid
#处理流程
1.根据索引过滤获取到满足条件的记录<r>
2.将满足条件的记录放至read_rnd_buffer_size,并根据rowid进行排序,得到一个有序的结果集<r> order by rowid
3.遍历结果集通过主键进行回表查询,此时为顺序扫描,返回客户端满足条件的记录
AI 代码解读
2、MRR的特点
1)MRR算法主要是针对基于二级索引的过滤查询的优化,若过滤条件无索引则进行全表扫描。
2)MRR的特点就是将通过索引获取到满足条件的结果集(二级索引,主键索引)按照主键索引进行排序,将随机IO转换为顺序IO,从而再后续回表查询时带来性能上的提升。
3、MRR参数控制
mysql> show variables like 'optimizer_switch'\G
mrr=on //mrr优化,默认打开
mrr_cost_based=on //mrr基于代价评估是否使用mrr算法,默认打开。MySQL优化器CBO一般会认为mrr资源消耗较大而放弃使用mrr,若需要使用mrr,可以将该参数打开。
mysql> set optimizer_switch='mrr=on,mrr_cost_based=off'; //开启mrr
AI 代码解读
4、示例
root@mysql57 15:39: [db2]> explain select * from sbtest1 where k<10000 ;
+----+-------------+---------+------------+-------+---------------+-------+---------+------+------+----------+-----------------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+---------+------------+-------+---------------+-------+---------+------+------+----------+-----------------------+
| 1 | SIMPLE | sbtest1 | NULL | range | idx_k | idx_k | 4 | NULL | 194 | 100.00 | Using index condition |
+----+-------------+---------+------------+-------+---------------+-------+---------+------+------+----------+-----------------------+
1 row in set, 1 warning (0.00 sec)
root@mysql57 15:39: [db2]> set session optimizer_switch='mrr=on,mrr_cost_based=off';
Query OK, 0 rows affected (0.00 sec)
root@mysql57 15:39: [db2]> explain select * from sbtest1 where k<10000 ;
+----+-------------+---------+------------+-------+---------------+-------+---------+------+------+----------+----------------------------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+---------+------------+-------+---------------+-------+---------+------+------+----------+----------------------------------+
| 1 | SIMPLE | sbtest1 | NULL | range | idx_k | idx_k | 4 | NULL | 194 | 100.00 | Using index condition; Using MRR |
+----+-------------+---------+------------+-------+---------------+-------+---------+------+------+----------+----------------------------------+
1 row in set, 1 warning (0.00 sec)
AI 代码解读
二、Simple Nested-Loop Join(SNLJ)
1、SNLJ原理
1)伪代码
##SQL
select * from tb_r join tb_s on tb_r.r=tb_s.s
##伪代码
for each row r in R do
for each row s in S do
if r and s satisfy the join condition
then output the tuple <r,s>
AI 代码解读
2)处理流程
1.遍历驱动表满足条件的所有记录
2.对于驱动表的每一行记录,对被驱动表进行遍历,获取到满足join条件的所有记录<r,s>
3.根据满足join条件的结果集,通过主键回表扫描,获取需要字段
AI 代码解读
2、SNLJ特点
1)该算法下SQL执行资源消耗最大,对于扫描次数来讲,驱动表扫描1次,被驱动表扫描次数取决于驱动表记录数(对于驱动表中每行记录都要遍历被驱动表一次);对于SQL扫描记录数来讲,SQL执行扫描行数 = 驱动表行数 + 驱动表记录数 * 被驱动表记录数(笛卡尔积)
2)该算法主要是针对被驱动表关联字段无索引的情况,但是MySQL对该情况做了优化,利用join buffer并通过BNL算法减少对被驱动表的扫描次数
3、示例
##手动关闭BNL,数据库会使用SNLJ算法
root@mysql57 15:55: [db2]> set session optimizer_switch='block_nested_loop=off';
Query OK, 0 rows affected (0.00 sec)
root@mysql57 15:55: [db2]> explain select * from sbtest1 r join sbtest2 s on r.k=s.k;
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+-------------+
| 1 | SIMPLE | r | NULL | ALL | NULL | NULL | NULL | NULL | 100 | 100.00 | NULL |
| 1 | SIMPLE | s | NULL | ALL | NULL | NULL | NULL | NULL | 200 | 10.00 | Using where |
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+-------------+
2 rows in set, 1 warning (0.00 sec)
##可以看到SQL扫描记录数=100+100*200=20100
# Time: 2020-04-14T16:02:13.707953+08:00
# User@Host: root[root] @ localhost [] Id: 24
# Query_time: 0.007069 Lock_time: 0.000140 Rows_sent: 47 Rows_examined: 20100
SET timestamp=1586851333;
select * from sbtest1 r join sbtest2 s on r.k=s.k;
AI 代码解读
三、Index Nested-Loop Join
1、INLJ原理
1)伪代码实现
##SQL
select * from tb_r join tb_s on tb_r.r=tb_s.s
##伪代码
for each row r in R do
lookupr in S index
if found s == r
then output the tuple <r,s>
AI 代码解读
2)处理流程
1.遍历满足过滤条件的驱动表中所有的记录
2.对于驱动表中每一条记录,通过索引进行关联查询,找到所有满足join条件的记录<r,s>
3.遍历结果集,通过主键回表扫描,获取需要的字段信息
AI 代码解读
2、INLJ特点
1)该算法主要针对被驱动表关联列有索引的情况
2)该算法基本上是MySQL在进行表关联时使用最多的算法,对SQL的扫描数据来讲,驱动表扫描次数为1,被驱动表扫描次数为0;对于SQL的扫描记录数来讲,SQL执行扫描行数 = 驱动表记录数 + 驱动表的记录 * 索引关联满足条件记录数
3、示例
##对于驱动表关联字段有索引的情况,默认使用IBLJ算法
root@mysql57 16:04: [db2]> explain select * from sbtest1 r join sbtest2 s on r.k=s.k;
+----+-------------+-------+------------+------+---------------+-------+---------+---------+------+----------+-------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-------+------------+------+---------------+-------+---------+---------+------+----------+-------+
| 1 | SIMPLE | r | NULL | ALL | NULL | NULL | NULL | NULL | 100 | 100.00 | NULL |
| 1 | SIMPLE | s | NULL | ref | idx_k | idx_k | 4 | db2.r.k | 1 | 100.00 | NULL |
+----+-------------+-------+------------+------+---------------+-------+---------+---------+------+----------+-------+
2 rows in set, 1 warning (0.00 sec)
##可以看到该算法下SQL扫描记录数=100+47(满足join条件记录数)
# Time: 2020-04-14T16:05:29.890558+08:00
# User@Host: root[root] @ localhost [] Id: 24
# Query_time: 0.000714 Lock_time: 0.000144 Rows_sent: 47 Rows_examined: 147
SET timestamp=1586851529;
select * from sbtest1 r join sbtest2 s on r.k=s.k;
AI 代码解读
四、Block Nested-Loop Join(BNL)
1、BNL原理
1)伪代码
##SQL
select * from tb_r join tb_s on tb_r.r=tb_s.s
##伪代码
for each tuple r in R do
store used columns as p from R in join buffer
for each tuple s in S do
if p and s satisfy the join condition
then output the tuple <p,s>
AI 代码解读
2)处理流程
1.遍历满足过滤条件的驱动表中所有的记录(SQL查询的所有字段),并放入至join buffer
2.若所有驱动表满足条件记录放入join buffer,遍历被驱动表所有记录,获取满足join条件的记录结果集
3.若join buffer无法一次性存储全部驱动表记录,可分批读取记录至join buff,重复2步骤
AI 代码解读
2、BNL特点
1)BNL主要是针对被驱动表关联字段无索引时的优化,如果我们在执行计划中看到“Using join buffer (Block Nested Loop)”说明被驱动表表表关联字段缺少索引或索引失效无法有效利用索引。
2)该算法是对SNLJ算法的优化,并且可将该算法BNL提升至INLJ进行优化。对SQL的扫描数据来讲,驱动表扫描次数为1,被驱动表扫描次数为 驱动表记录大小 / join_buffer_size ;对于SQL的扫描记录数来讲,SQL执行扫描行数 = 驱动表记录数 + (驱动表记录/join_buffer_size) * 被驱动表记录数
3)在一定的程度上,提高join_buffer_size的大小是可以提高使用BNL算法SQL的执行效率,但是join_buffer_size是会话连接上去就会提前进行分配的,若SQL为N个表join,那其分配的join buffer大小为 join_buffer_size * (N-1),所以生产环境中我们不可对该参数设置过大。
3、相关参数
mysql> show variables like 'optimizer_switch'\G
block_nested_loop=on //BNL优化,默认打开
mysql> set optimizer_switch='block_nested_loop=on'; //开启BNL
AI 代码解读
4、示例
##打开BNL算法
root@mysql57 16:07: [db2]> set session optimizer_switch='block_nested_loop=on';
Query OK, 0 rows affected (0.00 sec)
##可以看到执行计划中使用了BNL算法
root@mysql57 16:07: [db2]> explain select * from sbtest1 r join sbtest2 s on r.k=s.k;
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+----------------------------------------------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+----------------------------------------------------+
| 1 | SIMPLE | r | NULL | ALL | NULL | NULL | NULL | NULL | 100 | 100.00 | NULL |
| 1 | SIMPLE | s | NULL | ALL | NULL | NULL | NULL | NULL | 200 | 10.00 | Using where; Using join buffer (Block Nested Loop) |
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+----------------------------------------------------+
2 rows in set, 1 warning (0.00 sec)
##该算法下SQL扫描记录数=100+1*200
# Time: 2020-04-14T16:08:33.345173+08:00
# User@Host: root[root] @ localhost [] Id: 24
# Query_time: 0.002777 Lock_time: 0.000144 Rows_sent: 47 Rows_examined: 300
SET timestamp=1586851713;
select * from sbtest1 r join sbtest2 s on r.k=s.k;
##手动调整join_buffer_size的大小
root@mysql57 16:08: [db2]> show variables like '%join_buffer_size%';
+------------------+--------+
| Variable_name | Value |
+------------------+--------+
| join_buffer_size | 262144 |
+------------------+--------+
1 row in set (0.00 sec)
root@mysql57 16:11: [db2]> set session join_buffer_size=1024;
Query OK, 0 rows affected (0.00 sec)
##缩小join_buffer_size大小后,可以发现SQL扫描记录数上涨,10100=100+5*200
# Time: 2020-04-14T16:11:33.191980+08:00
# User@Host: root[root] @ localhost [] Id: 24
# Query_time: 0.005209 Lock_time: 0.000148 Rows_sent: 47 Rows_examined: 10100
SET timestamp=1586851893;
select * from sbtest1 r join sbtest2 s on r.k=s.k;
AI 代码解读
五、Batched Key Access Join(BKA)
1、BKA原理
1)伪代码
for each row r in R do
lookupr in S index
if found s == r
then get the tuple <r,s>
use mrr interface output the <r,s> order by rowid
AI 代码解读
2)处理流程
1.遍历满足过滤条件的驱动表中所有的记录
2.对于驱动表中每一条记录,通过索引进行关联查询,找到所有满足join条件的记录<r,s>
3.通过mrr结果对以上结果集的rowid进行排序
4.遍历结果集,通过主键回表扫描(顺序读),获取需要的字段信息
AI 代码解读
2、BKA特点
1)BKA算法是对INLJ算法的一个优化,其区别就是在获取到满足join条件记录的结果集后,通过MRR接口对rowid进行排序,以保证后续的回表操作为顺序读来提高
2)BKA算法算法默认关闭。BKA算法的优化基于MRR,所以若需要打开BKA算法,需要打开MRR并关闭mrr_cost_based。
3、相关参数
mysql> show variables like 'optimizer_switch'\G
batched_key_access=off //BKA优化,默认关闭
mysql> set optimizer_switch='mrr=on,mrr_cost_based=off,batched_key_access=on'; //开启BKA
AI 代码解读
4、示例
root@mysql57 16:19: [db2]> set session optimizer_switch='mrr=on,mrr_cost_based=off,batched_key_access=on';
Query OK, 0 rows affected (0.00 sec)
root@mysql57 16:19: [db2]> explain select * from sbtest1 r join sbtest2 s on r.k=s.k;
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+----------------------------------------------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+----------------------------------------------------+
| 1 | SIMPLE | r | NULL | ALL | NULL | NULL | NULL | NULL | 100 | 100.00 | NULL |
| 1 | SIMPLE | s | NULL | ALL | NULL | NULL | NULL | NULL | 200 | 10.00 | Using where; Using join buffer (Block Nested Loop) |
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+----------------------------------------------------+
2 rows in set, 1 warning (0.00 sec)
root@mysql57 16:20: [db2]> alter table sbtest2 add index idx_k(k);
Query OK, 0 rows affected (0.05 sec)
Records: 0 Duplicates: 0 Warnings: 0
root@mysql57 16:20: [db2]> explain select * from sbtest1 r join sbtest2 s on r.k=s.k;
+----+-------------+-------+------------+------+---------------+-------+---------+---------+------+----------+----------------------------------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-------+------------+------+---------------+-------+---------+---------+------+----------+----------------------------------------+
| 1 | SIMPLE | r | NULL | ALL | NULL | NULL | NULL | NULL | 100 | 100.00 | NULL |
| 1 | SIMPLE | s | NULL | ref | idx_k | idx_k | 4 | db2.r.k | 1 | 100.00 | Using join buffer (Batched Key Access) |
+----+-------------+-------+------------+------+---------------+-------+---------+---------+------+----------+----------------------------------------+
2 rows in set, 1 warning (0.00 sec)
##BKA算法是对INLJ算法的优化,其SQL扫描记录数只是驱动表的记录数?
# Time: 2020-04-14T16:20:49.212383+08:00
# User@Host: root[root] @ localhost [] Id: 24
# Query_time: 0.000680 Lock_time: 0.000145 Rows_sent: 47 Rows_examined: 100
SET timestamp=1586852449;
select * from sbtest1 r join sbtest2 s on r.k=s.k;
AI 代码解读
六、Hashjoin
Hashjoin从MySQL8.0.18后才开始支持,M一SQL 8.0.18之前只支持NLP相关的算法。Hashjoin主要是针对表关联字段无有效索引可利用时进行的一种优化算法。
1、In-Memory Join(CHJ)原理及特点
1)构建阶段,遍历驱动表,以join条件为key,查询需要的列作为value创建hash表。
2)探测阶段,根据驱动表构建出来的hash表,对被驱动表的关联列进行遍历,并计算关联列的hash值判断是否满足join条件,获取到满足条件的所有记录的结果集
3)CHJ主要适用于被驱动表关联字段无索引,切驱动表可一次性读取到join_buffer_size的情况,该情况下只需要对驱动表扫描1次,被驱动表扫描1次。
2、On-Disk Hash Join原理及特点
1)如果驱动表的记录无法一次性存储到join_buffer_size中,构建阶段会首先利用hash算将驱动表进行分区,并产生临时分片写到磁盘上;
2)在探测阶段,对被驱动表使用同样的hash算法进行分区,保证相同的分区中,驱动表和被驱动表满足表关联的等值条件的情况下,其hash算法将其分配到相同的分区中。
3)On-Disk Hash Join是基于CHJ,对join_buffer_size无法满足一次性存储所有的驱动表记录情况下的优化
4)当驱动表记录超过内存时,MySQL通过hash算法对其进行分区处理,若分区后部分分区数据仍然超出join_buffer_size的大小,则MySQL会分批次读取该分区的记录,每次处理完后清理hash表,重复以上操作直到处理完所有分区数据。
5)该算法下驱动表扫描次数为1,被驱动表扫描次数与hash算法分区个数以及每个分区下驱动表记录大小/join_buffer_size个数相关,驱动表数据越大其被驱动表扫描次数越多
3、示例
## MySQL 8.0.19默认开启hashjoin,可以使用explain format=tree查看SQL执行计划
root@mysql57 17:16: [db2]> explain format=tree select * from sbtest1 r join sbtest2 s on r.k=s.k;
+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| EXPLAIN |
+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| -> Inner hash join (s.k = r.k) (cost=9661.47 rows=2000)
-> Table scan on s (cost=76.21 rows=200)
-> Hash
-> Table scan on r (cost=42.50 rows=100)
|
+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1 row in set (0.00 sec)
##可以看到hashjoin算法下,SQL扫描记录数为100+1*200,该算法相对于SNLJ和BNL都有所提高
# Time: 2020-04-14T17:16:34.857120+08:00
# User@Host: root[root] @ localhost [] Id: 17
# Query_time: 0.001235 Lock_time: 0.000206 Rows_sent: 47 Rows_examined: 300
SET timestamp=1586855794;
select * from sbtest1 r join sbtest2 s on r.k=s.k;
AI 代码解读
文章参考:
姜承尧大佬公众号:https://mp.weixin.qq.com/s?__biz=MjM5MjIxNDA4NA==&mid=205923864&idx=1&sn=63b97a02def11c3e4fceb67d25c79628&scene=21#wechat_redirect
【mysql】关于ICP、MRR、BKA等特性:https://www.cnblogs.com/chenpingzhao/p/6720531.html
MySQL8.0 新特性 Hash Join:https://www.cnblogs.com/cchust/p/11961851.html
AI 代码解读