复杂业务如何保证Flutter的高性能高流畅度?

简介: 高性能高流畅度是flutter言过其实?还是我们最初的姿势不对?

作者:闲鱼技术-三莅

背景

高性能高流畅度一直是Flutter团队宣传的一大亮点,也是当初闲鱼选择Flutter的重要因素之一,但是随着复杂业务的应用落地,通过Flutter页面和原生页面滑动流畅度对比,我们开始产生怀疑,因为部分Flutter页面流畅度明显低于Native,是Flutter的宣传言过其实还是我们开发人员使用姿势有问题,今天我们就来具体分析下。

Flutter渲染原理简介

优化之前我们先来介绍下Flutter的渲染原理,通过这部分基础了解渲染流程以及主要耗时花费

flutter视图树包含了三颗树:Widget、Element、RenderObject

  • Widget: 存放渲染内容、它只是一个配置数据结构,创建是非常轻量的,在页面刷新的过程中随时会重建
  • Element: 同时持有Widget和RenderObject,存放上下文信息,通过它来遍历视图树,支撑UI结构
  • RenderObject: 根据Widget的布局属性进行layout,paint ,负责真正的渲染

从创建到渲染的大体流程是:根据Widget生成Element,然后创建相应的RenderObject并关联到Element.renderObject属性上,最后再通过RenderObject来完成布局排列和绘制。

例如下面这段布局代码

Container(
      color: Colors.blue,
      child: Row(
        children: <Widget>[
          Image.asset('image'),
          Text('text'),
        ],
      ),
    );

对应三棵树的结构如下图

了解了这三棵树,我们再来看下页面刷新的时候具体做了哪些操作

当需要更新UI的时候,Framework通知Engine,Engine会等到下个Vsync信号到达的时候,会通知Framework进行animate, build,layout,paint,最后生成layer提交给Engine。Engine会把layer进行组合,生成纹理,最后通过Open Gl接口提交数据给GPU, GPU经过处理后在显示器上面显示,如下图:

结合前面的例子,如果text文本或者image内容发生变化会触发哪些操作呢?

Widget是不可改变,需要重新创建一颗新树,build开始,然后对上一帧的element树做遍历,调用他的updateChild,看子节点类型跟之前是不是一样,不一样的话就把子节点扔掉,创造一个新的,一样的话就做内容更新,对renderObject做updateRenderObject操作,updateRenderObject内部实现会判断现在的节点跟上一帧是不是有改动,有改动才会别标记dirty,重新layout、paint,再生成新的layer交给GPU,流程如下图:

到这里大家对Flutter在渲染方面有基本的理解,作为后面优化部分内容理解的基础

性能分析工具及方法

下面来看下性能分析工具,注意,统计性能数据一定要在真机+profile模式下运行,拿到最接近真实的体验数据。

performance overlay

平时常用的性能分析工具有performance overlay,通过他可以直观看到当前帧的耗时,但是他是UI线程和GPU线程分开展示的,UI Task Runner是Flutter Engine用于执行Dart root isolate代码,GPU Task Runner被用于执行设备GPU的相关调用。绿色的线表示当前帧,出现红色则表示耗时超过16.6ms,也就是发生丢帧现象

Dart DevTool

另一个工具是Dart DevTool ,就是早期的Observatory,官方提供的性能检测工具。它的 timeline 界面可以让逐帧分析应用的 UI 性能。但是目前还是预览版,存在一些问题。

profile模式下运行起来,点击android studio底部的菜单按钮,会弹出一个网页

点击顶部的Timeline菜单

这个时候滑动页面,每一帧的耗时会以柱形bar的形式显示在页面上,每条bar代表一个frame,同时用不同颜色区分UI/GPU线程耗时,这个时候我们要分析卡顿的场景就需要选中一条红色的bar(总耗时超过16.6ms),中间区域的Frame events chart显示了当前选中的frame的事件跟踪,UI和GPU事件是独立的事件流,但它们共享一个公共的时间轴。

选中Frame events chart中的某个事件,以上图为例Layout耗时最长,我们选中它,会在底部Flame chart区域显示一个自顶向下的堆栈跟踪,每个堆栈帧的宽度表示它消耗CPU的时长,消耗大量CPU时长的堆栈是我们首要分析的重点,后面就是具体分析堆栈,定位卡顿问题。

debug调试工具

另外还有一些debug调试工具可以辅助查看更多信息,注意,只能在debug模式下使用分析,拿到的数据不能作为性能标准

debugProfileBuildsEnabled:向 Timeline 事件中添加每个widget的build 信息

debugProfilePaintsEnabled: 向 timeline 事件中添加每个renderObject的paint 信息

debugPaintLayerBordersEnabled:每个layer会出现一个边框,帮助区分layer层级

debugPrintRebuildDirtyWidgets:打印标记为dirty的widgets

debugPrintLayouts:打印标记为dirty的renderObjects

debugPrintBeginFrameBanner/debugPrintEndFrameBanner:打印每帧开始和结束

实例分析

了解这些工具下面我们来看个简单的demo具体分析下,一个由Column、Container、ListView嵌套的布局,其中有个定时器控制Text中显示的文本实时更新

import 'dart:async';
import 'package:flutter/material.dart';
import 'package:flutter/widgets.dart';

class TestDemo extends StatefulWidget {
  @override
  State<StatefulWidget> createState() {
    return _TestDemoState();
  }
}

class _TestDemoState extends State<TestDemo> {
  int _count = 0;
  Timer _timer;
  @override
  void initState() {
    super.initState();
    _timer = Timer.periodic(Duration(milliseconds: 1000), (t) {
      setState(() {
        _count++;
      });
    });
  }
  @override
  void dispose() {
    if (_timer != null) {
      if (_timer.isActive) {
        _timer.cancel();
      }
    }
    super.dispose();
  }
  @override
  Widget build(BuildContext context) {
    return new Scaffold(
        appBar: new AppBar(
          title: new Text("Test Demo"),
        ),
        body: content()
    );
  }
  Widget content(){
    Widget result = Column(
      children: <Widget>[
        Container(
          margin: EdgeInsets.fromLTRB(10,10,10,5),
          height: 100,
          color: Color(0xff1fbfbf),
        ),
        Container(
          margin: EdgeInsets.fromLTRB(10,5,10,10),
          height: 100,
          color: Color(0xff1b8bdf),
        ),
        Container(
          height: 100,
          child: ListView.builder(
              scrollDirection: Axis.horizontal,
              itemCount: 5,
              itemBuilder: (context, index) {
                return Container(
                  width: 70,
                  height: 70,
                  child: Image.asset(
                    'assets/images/common_empty.png',
                    width: 50,
                    height: 50,
                  ),
                );
              }),
        ),

        Container(
            margin: EdgeInsets.fromLTRB(10,20,10,10),
            height: 100,
            width: 350,
            color: Colors.yellow,
            child: Center(
              child:
              Text(
                _count.toString(),
                style: TextStyle(fontSize: 18, fontWeight:FontWeight.bold),
              ),
            )
        ),
      ],
    );
    return result;
  }
}

大部分widget都是静态的,只有黄色Container中包含一个内容一直刷新的Text,这个时候我们打开debugProfileBuildsEnabled,用Timeline分析下它的渲染耗时,可以通过Frame events chart中显示的build层级非常深

结合第一部分渲染原理我们了解到,每次定时器刷新text数字的时候,整个页面widget树都会重新build,但其实只有最底层Container中的Text内容在改变,没有必要刷新整颗树,所以这里我们的优化方案是提高build效率,降低Widget tree遍历的出发点,将setState刷新数据尽量下发到底层节点,所以将Text单独抽取成独立的Widget,setState下发到抽取出的Widget内部

class _TestDemoState extends State<TestDemo> {
  
  ...

  Widget content(){
    Widget result = Column(
      children: <Widget>[
        ...
        Container(
            margin: EdgeInsets.fromLTRB(10,20,10,10),
            height: 100,
            width: 350,
            color: Colors.yellow,
            child: Center(
              child:
                  CountText()
            )
        ),
      ],
    );
    return result;
  }
}

class CountText extends StatefulWidget {
  @override
  State<StatefulWidget> createState() {
    return _CountTextState();
  }
}

class _CountTextState extends State<CountText> {
  int _count = 0;
  Timer _timer;
  @override
  void initState() {
    super.initState();
    _timer = Timer.periodic(Duration(milliseconds: 1000), (t) {
      setState(() {
        _count++;
      });
    });
  }

  @override
  void dispose() {
    if (_timer != null) {
      if (_timer.isActive) {
        _timer.cancel();
      }
    }
    super.dispose();
  }

  @override
  Widget build(BuildContext context) {
    return Text(
      _count.toString(),
      style: TextStyle(fontSize: 18, fontWeight:FontWeight.bold),
    );
  }
}

修改后的Timeline显示如下图:

build层级明显减少,总耗时也明显降低

接下来分析下Paint过程有没有可以优化的部分,我们打开debugProfilePaintsEnabled变量分析可以看到Timeline显示的paint层级

通过debugPaintLayerBordersEnabled = true;显示layer边框可以看到不断变化的Text和其他Widget都是在同一个layer中的,这里我们想到的优化点是利用RepaintBoundary提高paint效率,它为经常发生显示变化的内容提供一个新的隔离layer,新的layer paint不会影响到其他layer

RepaintBoundary(
          child: Container(
              margin: EdgeInsets.fromLTRB(10,20,10,10),
              height: 100,
              width: 350,
              color: Colors.yellow,
              child: Center(
                  child: CountText()
              )
          ),
        ),

看下优化后的效果

可以看到我们为黄色的Container建立了单独的layer,并且paint的层级减少很多

总结常见问题

  1. 提高build效率,setState刷新数据尽量下发到底层节点
  2. 提高paint效率,RepaintBoundry创建单独layer减少重绘区域

这两个我们之前的例子已经具体分析过

  1. 减少build中逻辑处理,因为widget在页面刷新的过程中随时会通过build重建,build调用频繁,我们应该只处理跟UI相关的逻辑
  2. 减少saveLayer(ShaderMask、ColorFilter、Text Overflow)、clipPath的使用,saveLayer会在GPU中分配一块新的绘图缓冲区,切换绘图目标,这个操作是在GPU中非常耗时的,clipPath会影响每个绘图指令,做相交操作,之外的部分剔除掉,所以这也是个耗时操作
  3. 减少Opacity Widget 使用,尤其是在动画中,因为他会导致widget每一帧都会被重建,可以用 AnimatedOpacity 或 FadeInImage 进行代替

以上内容介绍了些Flutter常见的性能问题以及我们怎么用工具检测这个问题,在平时开发过程中要留意规避这类问题

Flutter-DX案例分析

近期我们做了个Flutter端的动态化模板渲染方案Flutter-DX,它使用集团DinamicX的DSL,通过下发DSL模板,在Flutter侧实现动态解析渲染。具体介绍可以参考之前的文章:

如何在Flutter上实现高性能的动态模板渲染

做一个高一致性、高性能的Flutter动态渲染,真的很难么?

这里不再详细介绍。

尽管进行了一次渲染架构升级,很大程度上提升性能表现,但是通过高可用线上统计,发现在长列表场景下fps值没有达到预期值,所以需要进一步分析哪些操作导致的耗时问题。

以搜索页页面结构为例,外部是GridView的容器,里面都是一个个DX模板组成的宝贝card,滑动过程中发现流畅度要明显偏低

所以我们做了以下的优化措施

1.针对Sliver滑动的优化,sliver在滑动过程中,有一个超出屏幕上下250像素的一个缓存区

在列表滚动过程中,DX card不断的被重建和销毁,没有任何缓存机制,我们在其中加了个缓存池,流程如下,避免element不断的被销毁和创建,一定程度提高流畅度

2. 通过Timeline分析发现TextPaint的layout耗时显著,进一步对比分析发现,同样的UI显示,带换行符的长文本长度layout耗时明显偏高,

后来确认带换行符的文本会影响布局效率,具体分析可以查看 issue

这里我们做的优化措施是在判断只有一行文本显示的情况下,截取换行符前的内容作为text文本,从而提升TextPaint layout效率。

除此之外,还有一些减少布局层级和简化build流程,预加载缓存等措施,实现将FPS提升3个点,达到一定程度的优化效果。

总结

以上内容分析了flutter的渲染原理以及遇到卡顿问题可以用哪些工具从哪些方向入手分析,Flutter虽然一直宣称流畅度是一大亮点,但也存在一定的优化空间,以及需要开发者掌握一定的开发技巧才能达到更丝滑的体验。

相关实践学习
基于阿里云DeepGPU实例,用AI画唯美国风少女
本实验基于阿里云DeepGPU实例,使用aiacctorch加速stable-diffusion-webui,用AI画唯美国风少女,可提升性能至高至原性能的2.6倍。
相关文章
|
11月前
|
移动开发 JavaScript 测试技术
|
11月前
|
容器
闲鱼技术2022年度白皮书-Flutter主题-打造Flutter高性能富文本编辑器——协议篇(中)
闲鱼技术2022年度白皮书-Flutter主题-打造Flutter高性能富文本编辑器——协议篇
156 0
|
11月前
|
UED
闲鱼技术2022年度白皮书-Flutter主题-打造Flutter高性能富文本编辑器——协议篇(下)
闲鱼技术2022年度白皮书-Flutter主题-打造Flutter高性能富文本编辑器——协议篇
125 0
|
11月前
|
JavaScript 前端开发
|
11月前
|
Android开发 iOS开发
闲鱼技术2022年度白皮书-Flutter主题-打造Flutter高性能富文本编辑器——渲染篇(中)
闲鱼技术2022年度白皮书-Flutter主题-打造Flutter高性能富文本编辑器——渲染篇
229 0
|
11月前
闲鱼技术2022年度白皮书-Flutter主题-打造Flutter高性能富文本编辑器——渲染篇(下)
闲鱼技术2022年度白皮书-Flutter主题-打造Flutter高性能富文本编辑器——渲染篇
146 0
|
缓存 移动开发 监控
Flutter 流畅度优化实践总结
“围绕 Flutter 流畅度体感优化,分享了挑战、线上线下监控工具建设、优化手段在组件容器沉淀,最后给出了优化建议。"
1434 0
Flutter 流畅度优化实践总结
|
存储 索引
Flutter从0到1实现高性能、多功能的富文本编辑器(基础实战篇)
在上一章中,我们分析了一个富文本编辑器需要有哪些模块组成。在本文中,让我们从零开始,去实现自定义的富文本编辑器。
|
JSON Android开发 数据格式
Flutter从0到1实现高性能、多功能的富文本编辑器(模块分析篇)
经过前面两篇文章的基础知识铺垫,我们终于要进入到专栏的核心内容 — 富文本。富文本编辑器可以说是APP中最复杂,但使用场景又极广的组件之一。例如各大笔记APP的核心功能、闲鱼的商品发布功能、还
Flutter从0到1实现高性能、多功能的富文本编辑器(模块分析篇)
|
移动开发 Dart 前端开发
用 Vue.js 构建一个高性能 Flutter 应用
染陌给大家带来一个用 Vue.js 开发 Flutter 应用的方案,以及 Kraken 背后的实践与思考。
用 Vue.js 构建一个高性能 Flutter 应用