一次搞定各种数据库SQL执行计划

本文涉及的产品
云数据库 RDS SQL Server,独享型 2核4GB
云原生数据库 PolarDB MySQL 版,Serverless 5000PCU 100GB
云数据库 RDS MySQL Serverless,0.5-2RCU 50GB
简介: 执行计划(execution plan,也叫查询计划或者解释计划)是数据库执行 SQL 语句的具体步骤,例如通过索引还是全表扫描访问表中的数据,连接查询的实现方式和连接的顺序等。如果 SQL 语句性能不够理想,我们首先应该查看它的执行计划。

云栖号:https://yqh.aliyun.com
第一手的上云资讯,不同行业精选的上云企业案例库,基于众多成功案例萃取而成的最佳实践,助力您上云决策!

image

作者 | 董旭阳TonyDong
出品 | CSDN 博客

执行计划(execution plan,也叫查询计划或者解释计划)是数据库执行 SQL 语句的具体步骤,例如通过索引还是全表扫描访问表中的数据,连接查询的实现方式和连接的顺序等。如果 SQL 语句性能不够理想,我们首先应该查看它的执行计划。本文主要介绍如何在各种数据库中获取和理解执行计划,并给出进一步深入分析的参考文档。

现在许多管理和开发工具都提供了查看图形化执行计划的功能,例如 MySQL Workbench、Oracle SQL Developer、SQL Server Management Studio、DBeaver 等;不过我们不打算使用这类工具,而是介绍利用数据库提供的命令查看执行计划。

我们先给出在各种数据库中查看执行计划的一个简单汇总:

image

本文使用的示例表和数据可以点击链接《SQL 入门教程》示例数据库(https://tonydong.blog.csdn.net/article/details/86518676)。

MySQL 执行计划

MySQL 中获取执行计划的方法很简单,就是在 SQL 语句的前面加上EXPLAIN关键字:

EXPLAIN
SELECT e.first_name,e.last_name,e.salary,d.department_name
  FROM employees e
  JOIN departments d ON (e.department_id = d.department_id)
 WHERE e.salary > 15000;

执行该语句将会返回一个表格形式的执行计划,包含了 12 列信息:

id|select_type|table|partitions|type  |possible_keys    |key    |key_len|ref                 |rows|filtered|Extra      |
--|-----------|-----|----------|------|-----------------|-------|-------|--------------------|----|--------|-----------|
 1|SIMPLE     |e    |          |ALL   |emp_department_ix|       |       |                    | 107|   33.33|Using where|
 1|SIMPLE     |d    |          |eq_ref|PRIMARY          |PRIMARY|4      |hrdb.e.department_id|   1|     100|           |

MySQL 中的EXPLAIN支持 SELECT、DELETE、INSERT、REPLACE 以及 UPDATE 语句。

接下来,我们要做的就是理解执行计划中这些字段的含义。下表列出了 MySQL 执行计划中的各个字段的作用:

image

对于上面的示例,只有一个 SELECT 子句,id 都为 1;首先对 employees 表执行全表扫描(type = ALL),处理了 107 行数据,使用 WHERE 条件过滤后预计剩下 33.33% 的数据(估计不准确);然后针对这些数据,依次使用 departments 表的主键(key = PRIMARY)查找一行匹配的数据(type = eq_ref、rows = 1)。

使用 MySQL 8.0 新增的 ANALYZE 选项可以显示实际执行时间等额外的信息:

EXPLAIN ANALYZE
SELECT e.first_name,e.last_name,e.salary,d.department_name
  FROM employees e
  JOIN departments d ON (e.department_id = d.department_id)
 WHERE e.salary > 15000;
-> Nested loop inner join  (cost=23.43 rows=36) (actual time=0.325..1.287 rows=3 loops=1)
    -> Filter: ((e.salary > 15000.00) and (e.department_id is not null))  (cost=10.95 rows=36) (actual time=0.281..1.194 rows=3 loops=1)
        -> Table scan on e  (cost=10.95 rows=107) (actual time=0.266..0.716 rows=107 loops=1)
    -> Single-row index lookup on d using PRIMARY (department_id=e.department_id)  (cost=0.25 rows=1) (actual time=0.013..0.015 rows=1 loops=3)

其中,Nested loop inner join 表示使用嵌套循环连接的方式连接两个表,employees 为驱动表。cost 表示估算的代价,rows 表示估计返回的行数;actual time 显示了返回第一行和所有数据行花费的实际时间,后面的 rows 表示迭代器返回的行数,loops 表示迭代器循环的次数。

关于 MySQL EXPLAIN 命令的使用和参数,可以参考 MySQL 官方文档 EXPLAIN 语句(https://dev.mysql.com/doc/refman/8.0/en/explain.html)。

关于 MySQL 执行计划的输出信息,可以参考 MySQL 官方文档理解查询执行计划(https://dev.mysql.com/doc/refman/8.0/en/execution-plan-information.html)。

Oracle 执行计划

Oracle 中提供了多种查看执行计划的方法,本文使用以下方式:

1.使用EXPLAIN PLAN FOR命令生成并保存执行计划;
2.显示保存的执行计划。

首先,生成执行计划:

EXPLAIN PLAN FOR
SELECT e.first_name,e.last_name,e.salary,d.department_name
  FROM employees e
  JOIN departments d ON (e.department_id = d.department_id)
 WHERE e.salary > 15000;

EXPLAIN PLAN FOR命令不会运行 SQL 语句,因此创建的执行计划不一定与执行该语句时的实际计划相同。

该命令会将生成的执行计划保存到全局的临时表 PLAN_TABLE 中,然后使用系统包 DBMS_XPLAN 中的存储过程格式化显示该表中的执行计划。以下语句可以查看当前会话中的最后一个执行计划:

SELECT * FROM TABLE(DBMS_XPLAN.display);
PLAN_TABLE_OUTPUT                                                                           |
--------------------------------------------------------------------------------------------|
Plan hash value: 1343509718                                                                 |
                                                                                            |
--------------------------------------------------------------------------------------------|
| Id  | Operation                    | Name        | Rows  | Bytes | Cost (%CPU)| Time     ||
--------------------------------------------------------------------------------------------|
|   0 | SELECT STATEMENT             |             |    44 |  1672 |     6  (17)| 00:00:01 ||
|   1 |  MERGE JOIN                  |             |    44 |  1672 |     6  (17)| 00:00:01 ||
|   2 |   TABLE ACCESS BY INDEX ROWID| DEPARTMENTS |    27 |   432 |     2   (0)| 00:00:01 ||
|   3 |    INDEX FULL SCAN           | DEPT_ID_PK  |    27 |       |     1   (0)| 00:00:01 ||
|*  4 |   SORT JOIN                  |             |    44 |   968 |     4  (25)| 00:00:01 ||
|*  5 |    TABLE ACCESS FULL         | EMPLOYEES   |    44 |   968 |     3   (0)| 00:00:01 ||
--------------------------------------------------------------------------------------------|
                                                                                            |
Predicate Information (identified by operation id):                                         |
---------------------------------------------------                                         |
                                                                                            |
   4 - access("E"."DEPARTMENT_ID"="D"."DEPARTMENT_ID")                                      |
       filter("E"."DEPARTMENT_ID"="D"."DEPARTMENT_ID")                                      |
   5 - filter("E"."SALARY">15000)                                                           |

Oracle 中的EXPLAIN PLAN FOR支持 SELECT、UPDATE、INSERT 以及 DELETE 语句。

接下来,我们同样需要理解执行计划中各种信息的含义:

  • Plan hash value 是该语句的哈希值。SQL 语句和执行计划会存储在库缓存中,哈希值相同的语句可以重用已有的执行计划,也就是软解析;
  • Id 是一个序号,但不代表执行的顺序。执行的顺序按照缩进来判断,缩进越多的越先执行,同样缩进的从上至下执行。Id 前面的星号表示使用了谓词判断,参考下面的 Predicate Information;
  • Operation 表示当前的操作,也就是如何访问表的数据、如何实现表的连接、如何进行排序操作等;
  • Name 显示了访问的表名、索引名或者子查询等,前提是当前操作涉及到了这些对象;
  • Rows 是 Oracle 估计的当前操作返回的行数,也叫基数(Cardinality);
  • Bytes 是 Oracle 估计的当前操作涉及的数据量
  • Cost (%CPU) 是 Oracle 计算执行该操作所需的代价;
  • Time 是 Oracle 估计执行该操作所需的时间;
  • Predicate Information 显示与 Id 相关的谓词信息。access 是访问条件,影响到数据的访问方式(扫描表还是通过索引);filter 是过滤条件,获取数据后根据该条件进行过滤。

在上面的示例中,Id 的执行顺序依次为 3 -> 2 -> 5 -> 4- >1。首先,Id = 3 扫描主键索引 DEPT_ID_PK,Id = 2 按主键 ROWID 访问表 DEPARTMENTS,结果已经排序;其次,Id = 5 全表扫描访问 EMPLOYEES 并且利用 filter 过滤数据,Id = 4 基于部门编号进行排序和过滤;最后 Id = 1 执行合并连接。显然,此处 Oracle 选择了排序合并连接的方式实现两个表的连接。

关于 Oracle 执行计划和 SQL 调优,可以参考 Oracle 官方文档《SQL Tuning Guide》(https://docs.oracle.com/en/database/oracle/oracle-database/19/tgsql/)。

SQL Server 执行计划

SQL Server Management Studio 提供了查看图形化执行计划的简单方法,这里我们介绍一种通过命令查看的方法:

SET STATISTICS PROFILE ON

以上命令可以打开 SQL Server 语句的分析功能,打开之后执行的语句会额外返回相应的执行计划:

SELECT e.first_name,e.last_name,e.salary,d.department_name
  FROM employees e
  JOIN departments d ON (e.department_id = d.department_id)
 WHERE e.salary > 15000;

first_name|last_name|salary  |department_name|
----------|---------|--------|---------------|
Steven    |King     |24000.00|Executive      |
Neena     |Kochhar  |17000.00|Executive      |
Lex       |De Haan  |17000.00|Executive      |

Rows|Executes|StmtText                                                                                                                                                                                           |StmtId|NodeId|Parent|PhysicalOp          |LogicalOp           |Argument                                                                                                                                                           |DefinedValues                                                       |EstimateRows|EstimateIO  |EstimateCPU|AvgRowSize|TotalSubtreeCost|OutputList                                                            |Warnings|Type    |Parallel|EstimateExecutions|
----|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|------|--------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------|------------|-----------|----------|----------------|----------------------------------------------------------------------|--------|--------|--------|------------------|
   3|       1|SELECT e.first_name,e.last_name,e.salary,d.department_name¶  FROM employees e¶  JOIN departments d ON (e.department_id = d.department_id)¶ WHERE e.salary > 15000                                  |     1|     1|     0|                    |                    |                                                                                                                                                                   |                                                                    |   2.9719627|            |           |          |     0.007803641|                                                                      |        |SELECT  |       0|                  |
   3|       1|  |--Nested Loops(Inner Join, OUTER REFERENCES:([e].[department_id]))                                                                                                                              |     1|     2|     1|Nested Loops        |Inner Join          |OUTER REFERENCES:([e].[department_id])                                                                                                                             |                                                                    |   2.9719627|           0|          0|        57|     0.007803641|[e].[first_name], [e].[last_name], [e].[salary], [d].[department_name]|        |PLAN_ROW|       0|                 1|
   3|       1|       |--Clustered Index Scan(OBJECT:([hrdb].[dbo].[employees].[emp_emp_id_pk] AS [e]), WHERE:([hrdb].[dbo].[employees].[salary] as [e].[salary]>(15000.00)))                                     |     1|     3|     2|Clustered Index Scan|Clustered Index Scan|OBJECT:([hrdb].[dbo].[employees].[emp_emp_id_pk] AS [e]), WHERE:([hrdb].[dbo].[employees].[salary] as [e].[salary]>(15000.00))                                     |[e].[first_name], [e].[last_name], [e].[salary], [e].[department_id]|           3|0.0038657407|   2.747E-4|        44|     0.004140441|[e].[first_name], [e].[last_name], [e].[salary], [e].[department_id]  |        |PLAN_ROW|       0|                 1|
   3|       3|       |--Clustered Index Seek(OBJECT:([hrdb].[dbo].[departments].[dept_id_pk] AS [d]), SEEK:([d].[department_id]=[hrdb].[dbo].[employees].[department_id] as [e].[department_id]) ORDERED FORWARD)|     1|     4|     2|Clustered Index Seek|Clustered Index Seek|OBJECT:([hrdb].[dbo].[departments].[dept_id_pk] AS [d]), SEEK:([d].[department_id]=[hrdb].[dbo].[employees].[department_id] as [e].[department_id]) ORDERED FORWARD|[d].[department_name]                                               |           1|    0.003125|   1.581E-4|        26|       0.0035993|[d].[department_name]                                                 |        |PLAN_ROW|       0|                 3|

SQL Server 中的执行计划支持 SELECT、INSERT、UPDATE、DELETE 以及 EXECUTE 语句。

SQL Server 执行计划各个步骤的执行顺序按照缩进来判断,缩进越多的越先执行,同样缩进的从上至下执行。接下来,我们需要理解执行计划中各种信息的含义:

  • Rows 表示该步骤实际产生的记录数;
  • Executes 表示该步骤实际被执行的次数;
  • StmtText 包含了每个步骤的具体描述,也就是如何访问和过滤表的数据、如何实现表的连接、如何进行排序操作等;
  • StmtId,该语句的编号;
  • NodeId,当前操作步骤的节点号,不代表执行顺序;
  • Parent,当前操作步骤的父节点,先执行子节点,再执行父节点;
  • PhysicalOp,物理操作,例如连接操作的嵌套循环实现;
  • LogicalOp,逻辑操作,例如内连接操作;
  • Argument,操作使用的参数;
  • DefinedValues,定义的变量值;
  • EstimateRows,估计返回的行数;
  • EstimateIO,估计的 IO 成本;
  • EstimateCPU,估计的 CPU 成本;
  • AvgRowSize,平均返回的行大小;
  • TotalSubtreeCost,当前节点累计的成本;
  • OutputList,当前节点输出的字段列表;
  • Warnings,预估得到的警告信息;
  • Type,当前操作步骤的类型;
  • Parallel,是否并行执行;
  • EstimateExecutions,该步骤预计被执行的次数;

对于上面的语句,节点执行的顺序为 3 -> 4 -> 2 -> 1。首先执行第 3 行,通过聚集索引(主键)扫描 employees 表加过滤的方式返回了 3 行数据,估计的行数(3.0841121673583984)与此非常接近;然后执行第 4 行,循环使用聚集索引的方式查找 departments 表,循环 3 次每次返回 1 行数据;第 2 行是它们的父节点,表示使用 Nested Loops 方式实现 Inner Join,Argument 列(OUTER REFERENCES:([e].[department_id]))说明驱动表为 employees ;第 1 行代表了整个查询,不执行实际操作。

最后,可以使用以下命令关闭语句的分析功能:

SET STATISTICS PROFILE OFF

关于 SQL Server 执行计划和 SQL 调优,可以参考 SQL Server 官方文档执行计划。

PostgreSQL 执行计划

PostgreSQL 中获取执行计划的方法与 MySQL 类似,也就是在 SQL 语句的前面加上EXPLAIN关键字:

EXPLAIN
SELECT e.first_name,e.last_name,e.salary,d.department_name
  FROM employees e
  JOIN departments d ON (e.department_id = d.department_id)
 WHERE e.salary > 15000;

QUERY PLAN                                                            |
----------------------------------------------------------------------|
Hash Join  (cost=3.38..4.84 rows=3 width=29)                          |
  Hash Cond: (d.department_id = e.department_id)                      |
  ->  Seq Scan on departments d  (cost=0.00..1.27 rows=27 width=15)   |
  ->  Hash  (cost=3.34..3.34 rows=3 width=22)                         |
        ->  Seq Scan on employees e  (cost=0.00..3.34 rows=3 width=22)|
              Filter: (salary > '15000'::numeric)                     |

PostgreSQL 中的EXPLAIN支持 SELECT、INSERT、UPDATE、DELETE、VALUES、EXECUTE、DECLARE、CREATE TABLE AS 以及 CREATE MATERIALIZED VIEW AS 语句。

PostgreSQL 执行计划的顺序按照缩进来判断,缩进越多的越先执行,同样缩进的从上至下执行。对于以上示例,首先对 employees 表执行全表扫描(Seq Scan),使用 salary > 15000 作为过滤条件;cost 分别显示了预估的返回第一行的成本(0.00)和返回所有行的成本(3.34);rows 表示预估返回的行数;width 表示预估返回行的大小(单位 Byte)。然后将扫描结果放入到内存哈希表中,两个 cost 都等于 3.34,因为是在扫描完所有数据后一次性计算并存入哈希表。接下来扫描 departments 并且根据 department_id 计算哈希值,然后和前面的哈希表进行匹配(d.department_id = e.department_id)。最上面的一行表明数据库采用的是 Hash Join 实现连接操作。

PostgreSQL 中的EXPLAIN也可以使用 ANALYZE 选项显示语句的实际运行时间和更多信息:

EXPLAIN ANALYZE
SELECT e.first_name,e.last_name,e.salary,d.department_name
  FROM employees e
  JOIN departments d ON (e.department_id = d.department_id)
 WHERE e.salary > 15000;

QUERY PLAN                                                                                                      |
----------------------------------------------------------------------------------------------------------------|
Hash Join  (cost=3.38..4.84 rows=3 width=29) (actual time=0.347..0.382 rows=3 loops=1)                          |
  Hash Cond: (d.department_id = e.department_id)                                                                |
  ->  Seq Scan on departments d  (cost=0.00..1.27 rows=27 width=15) (actual time=0.020..0.037 rows=27 loops=1)  |
  ->  Hash  (cost=3.34..3.34 rows=3 width=22) (actual time=0.291..0.292 rows=3 loops=1)                         |
        Buckets: 1024  Batches: 1  Memory Usage: 9kB                                                            |
        ->  Seq Scan on employees e  (cost=0.00..3.34 rows=3 width=22) (actual time=0.034..0.280 rows=3 loops=1)|
              Filter: (salary > '15000'::numeric)                                                               |
              Rows Removed by Filter: 104                                                                       |
Planning Time: 1.053 ms                                                                                         |
Execution Time: 0.553 ms

EXPLAIN ANALYZE通过执行语句获得了更多的信息。其中,actual time 是每次迭代实际花费的平均时间(ms),也分为启动时间和完成时间;loops 表示迭代次数;Hash 操作还会显示桶数(Buckets)、分批数量(Batches)以及占用的内存(Memory Usage),Batches 大于 1 意味着需要使用到磁盘的临时存储;Planning Time 是生成执行计划的时间;Execution Time 是执行语句的实际时间,不包括 Planning Time。

关于 PostgreSQL 的执行计划和性能优化,可以参考 PostgreSQL 官方文档性能提示(https://www.postgresql.org/docs/12/performance-tips.html)。

SQLite 执行计划

SQLite 也提供了EXPLAIN QUERY PLAN命令,用于获取 SQL 语句的执行计划:

sqlite> EXPLAIN QUERY PLAN
   ...> SELECT e.first_name,e.last_name,e.salary,d.department_name
   ...>   FROM employees e
   ...>   JOIN departments d ON (e.department_id = d.department_id)
   ...>  WHERE e.salary > 15000;
QUERY PLAN
|--SCAN TABLE employees AS e
`--SEARCH TABLE departments AS d USING INTEGER PRIMARY KEY (rowid=?)

SQLite 中的EXPLAIN QUERY PLAN支持 SELECT、INSERT、UPDATE、DELETE 等语句。

SQLite 执行计划同样按照缩进来显示,缩进越多的越先执行,同样缩进的从上至下执行。以上示例先扫描 employees 表,然后针对该结果依次通过主键查找 departments 中的数据。SQLite 只支持一种连接实现,也就是 nested loops join。

另外,SQLite 中的简单EXPLAIN也可以用于显示执行该语句的虚拟机指令序列:

sqlite> EXPLAIN
   ...> SELECT e.first_name,e.last_name,e.salary,d.department_name
   ...>   FROM employees e
   ...>   JOIN departments d ON (e.department_id = d.department_id)
   ...>  WHERE e.salary > 15000;
addr  opcode         p1    p2    p3    p4             p5  comment
----  -------------  ----  ----  ----  -------------  --  -------------
0     Init           0     15    0                    00  Start at 15
1     OpenRead       0     5     0     11             00  root=5 iDb=0; employees
2     OpenRead       1     2     0     2              00  root=2 iDb=0; departments
3     Rewind         0     14    0                    00
4       Column         0     7     1                    00  r[1]=employees.salary
5       Le             2     13    1     (BINARY)       53  if r[1]<=r[2] goto 13
6       Column         0     10    3                    00  r[3]=employees.department_id
7       SeekRowid      1     13    3                    00  intkey=r[3]
8       Column         0     1     4                    00  r[4]=employees.first_name
9       Column         0     2     5                    00  r[5]=employees.last_name
10      Column         0     7     6                    00  r[6]=employees.salary
11      Column         1     1     7                    00  r[7]=departments.department_name
12      ResultRow      4     4     0                    00  output=r[4..7]
13    Next           0     4     0                    01
14    Halt           0     0     0                    00
15    Transaction    0     0     8     0              01  usesStmtJournal=0
16    Integer        15000  2     0                    00  r[2]=15000
17    Goto           0     1     0                    00

关于 SQLite 的执行计划和优化器相关信息,可以参考 SQLite 官方文档解释查询计划。

版权声明:本文为CSDN博主「董旭阳TonyDong」的原创文章。

原文发布时间:2020-02-04

本文作者:董旭阳TonyDong

本文来自:“CSDN云计算”,了解相关信息可以关注“CSDN云计算

云栖号:https://yqh.aliyun.com
第一手的上云资讯,不同行业精选的上云企业案例库,基于众多成功案例萃取而成的最佳实践,助力您上云决策!

相关实践学习
基于CentOS快速搭建LAMP环境
本教程介绍如何搭建LAMP环境,其中LAMP分别代表Linux、Apache、MySQL和PHP。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
12天前
|
SQL 人工智能 算法
【SQL server】玩转SQL server数据库:第二章 关系数据库
【SQL server】玩转SQL server数据库:第二章 关系数据库
51 10
|
29天前
|
SQL 存储 BI
【软件设计师备考 专题 】数据库语言(SQL)
【软件设计师备考 专题 】数据库语言(SQL)
90 0
|
1月前
|
SQL 数据库
sql server中创建数据库和表的语法
sql server中创建数据库和表的语法
18 1
|
12天前
|
SQL 算法 数据库
【SQL server】玩转SQL server数据库:第三章 关系数据库标准语言SQL(二)数据查询
【SQL server】玩转SQL server数据库:第三章 关系数据库标准语言SQL(二)数据查询
76 6
|
1天前
|
SQL Oracle 关系型数据库
sql语句创建数据库
在创建数据库之前,请确保你有足够的权限,并且已经考虑了数据库的安全性和性能需求。此外,不同的DBMS可能有特定的最佳实践和配置要求,因此建议查阅相关DBMS的官方文档以获取更详细和准确的信息。
|
1天前
|
SQL 缓存 数据库
sql 数据库优化
SQL数据库优化是一个复杂且关键的过程,涉及多个层面的技术和策略。以下是一些主要的优化建议: 查询语句优化: 避免全表扫描:在查询时,尽量使用索引来减少全表扫描,提高查询速度。 使用合适的子查询方式:子查询可能降低查询效率,但可以通过优化子查询的结构或使用连接(JOIN)替代子查询来提高性能。 简化查询语句:避免不必要的复杂查询,尽量使SQL语句简单明了。 使用EXISTS替代IN:在查询数据是否存在时,使用EXISTS通常比IN更快。 索引优化: 建立合适的索引:对于经常查询的列,如主键和外键,应创建相应的索引。同时,考虑使用覆盖索引来进一步提高性能。 避免过多的索引:虽然索引可以提高查询
|
9天前
|
SQL 数据库
数据库SQL语言实战(二)
数据库SQL语言实战(二)
|
9天前
|
SQL 关系型数据库 数据库
【后端面经】【数据库与MySQL】SQL优化:如何发现SQL中的问题?
【4月更文挑战第12天】数据库优化涉及硬件升级、操作系统调整、服务器/引擎优化和SQL优化。SQL优化目标是减少磁盘IO和内存/CPU消耗。`EXPLAIN`命令用于检查SQL执行计划,关注`type`、`possible_keys`、`key`、`rows`和`filtered`字段。设计索引时考虑外键、频繁出现在`where`、`order by`和关联查询中的列,以及区分度高的列。大数据表改结构需谨慎,可能需要停机、低峰期变更或新建表。面试中应准备SQL优化案例,如覆盖索引、优化`order by`、`count`和索引提示。优化分页查询时避免大偏移量,可利用上一批的最大ID进行限制。
33 3
|
12天前
|
SQL 监控 数据库
数据库管理与电脑监控软件:SQL代码优化与实践
本文探讨了如何优化数据库管理和使用电脑监控软件以提升效率。通过SQL代码优化,如使用索引和调整查询语句,能有效提高数据库性能。同时,合理设计数据库结构,如数据表划分和规范化,也能增强管理效率。此外,利用Python脚本自动化收集系统性能数据,并实时提交至网站,可实现对电脑监控的实时性和有效性。这些方法能提升信息系统稳定性和可靠性,满足用户需求。
41 0
|
12天前
|
SQL 存储 数据挖掘
数据库数据恢复—RAID5上层Sql Server数据库数据恢复案例
服务器数据恢复环境: 一台安装windows server操作系统的服务器。一组由8块硬盘组建的RAID5,划分LUN供这台服务器使用。 在windows服务器内装有SqlServer数据库。存储空间LUN划分了两个逻辑分区。 服务器故障&初检: 由于未知原因,Sql Server数据库文件丢失,丢失数据涉及到3个库,表的数量有3000左右。数据库文件丢失原因还没有查清楚,也不能确定数据存储位置。 数据库文件丢失后服务器仍处于开机状态,所幸没有大量数据写入。 将raid5中所有磁盘编号后取出,经过硬件工程师检测,没有发现明显的硬件故障。以只读方式将所有磁盘进行扇区级的全盘镜像,镜像完成后将所
数据库数据恢复—RAID5上层Sql Server数据库数据恢复案例