c/c++测试函数的运行时间(八种方法)

简介: c/c++测试函数的运行时间(八种方法)

目前,存在着各种计时函数,一般的处理都是先调用计时函数,记下当前时间tstart,然后处理一段程序,再调用计时函数,记下处理后的时间tend,再tend和tstart做差,就可以得到程序的执行时间,但是各种计时函数的精度不一样.下面对各种计时函数,做些简单记录.

void foo()
{
    long i;
    for (i=0;i<100000000;i++)
    {
        long a= 0;
        a = a+1;
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

方法1,time()获取当前的系统时间,返回的结果是一个time_t类型,其实就是一个大整数,其值表示从CUT(Coordinated Universal Time)时间1970年1月1日00:00:00(称为UNIX系统的Epoch时间)到当前时刻的秒数.

void test1()
{
    time_t start,stop;
    start = time(NULL);
    foo();//dosomething
    stop = time(NULL);
    printf("Use Time:%ld\n",(stop-start));
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

方法2,clock()函数返回从“开启这个程序进程”到“程序中调用clock()函数”时之间的CPU时钟计时单元(clock tick)数,在MSDN中称之为挂钟时间(wal-clock)常量CLOCKS_PER_SEC,它用来表示一秒钟会有多少个时钟计时单元。

void test2()
{
    double dur;
    clock_t start,end;
    start = clock();
    foo();//dosomething
    end = clock();
    dur = (double)(end - start);
    printf("Use Time:%f\n",(dur/CLOCKS_PER_SEC));
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

如果你想学习C/C++可以来这个群,首先是三三零,中间是八五九,最后是七六六,里面有大量的学习资料可以下载。

方法3,timeGetTime()函数以毫秒计的系统时间。该时间为从系统开启算起所经过的时间,是windows api

void test3()
{
    DWORD t1,t2;
    t1 = timeGetTime();
    foo();//dosomething
    t2 = timeGetTime();
    printf("Use Time:%f\n",(t2-t1)*1.0/1000);
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

方法4,QueryPerformanceCounter()这个函数返回高精确度性能计数器的值,它可以以微妙为单位计时.但是QueryPerformanceCounter()确切的精确计时的最小单位是与系统有关的,所以,必须要查询系统以得到QueryPerformanceCounter()返回的嘀哒声的频率.QueryPerformanceFrequency()提供了这个频率值,返回每秒嘀哒声的个数.

void test4()
{
    LARGE_INTEGER t1,t2,tc;
    QueryPerformanceFrequency(&tc);
    QueryPerformanceCounter(&t1);
    foo();//dosomething
    QueryPerformanceCounter(&t2);
    printf("Use Time:%f\n",(t2.QuadPart - t1.QuadPart)*1.0/tc.QuadPart);
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

方法5,GetTickCount返回(retrieve)从操作系统启动到现在所经过(elapsed)的毫秒数,它的返回值是DWORD

void test5()
{
    DWORD t1,t2;
    t1 = GetTickCount();
    foo();//dosomething
    t2 = GetTickCount();
    printf("Use Time:%f\n",(t2-t1)*1.0/1000);
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

方法6,RDTSC指令,在Intel Pentium以上级别的CPU中,有一个称为“时间戳(Time Stamp)”的部件,它以64位无符号整型数的格式,记录了自CPU上电以来所经过的时钟周期数。由于目前的CPU主频都非常高,因此这个部件可以达到纳秒级的计时精度。这个精确性是上述几种方法所无法比拟的.在Pentium以上的CPU中,提供了一条机器指令RDTSC(Read Time Stamp Counter)来读取这个时间戳的数字,并将其保存在EDX:EAX寄存器对中。由于EDX:EAX寄存器对恰好是Win32平台下C++语言保存函数返回值的寄存器,所以我们可以把这条指令看成是一个普通的函数调用,因为RDTSC不被C++的内嵌汇编器直接支持,所以我们要用_emit伪指令直接嵌入该指令的机器码形式0X0F、0X31

inline unsigned __int64 GetCycleCount()
{
    __asm
    {
        _emit 0x0F;
        _emit 0x31;
    }
}

void test6()
{
    unsigned long t1,t2;
    t1 = (unsigned long)GetCycleCount();
    foo();//dosomething
    t2 = (unsigned long)GetCycleCount();
    printf("Use Time:%f\n",(t2 - t1)*1.0/FREQUENCY);   //FREQUENCY指CPU的频率
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17

方法7,gettimeofday() linux环境下的计时函数,int gettimeofday ( struct timeval * tv , struct timezone * tz ),gettimeofday()会把目前的时间有tv所指的结构返回,当地时区的信息则放到tz所指的结构中.

//timeval结构定义为:
struct timeval{
long tv_sec; /*秒*/
long tv_usec; /*微秒*/
};
//timezone 结构定义为:
struct timezone{
int tz_minuteswest; /*和Greenwich 时间差了多少分钟*/
int tz_dsttime; /*日光节约时间的状态*/
};
void test7()
{
    struct timeval t1,t2;
    double timeuse;
    gettimeofday(&t1,NULL);
    foo();
    gettimeofday(&t2,NULL);
    timeuse = t2.tv_sec - t1.tv_sec + (t2.tv_usec - t1.tv_usec)/1000000.0;
    printf("Use Time:%f\n",timeuse);
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20

方法8,linux环境下,用RDTSC指令计时.与方法6是一样的.只不过在linux实现方式有点差异.

#if defined (__i386__)
static __inline__ unsigned long long GetCycleCount(void)
{
        unsigned long long int x;
        __asm__ volatile("rdtsc":"=A"(x));
        return x;
}
#elif defined (__x86_64__)
static __inline__ unsigned long long GetCycleCount(void)
{
        unsigned hi,lo;
        __asm__ volatile("rdtsc":"=a"(lo),"=d"(hi));
        return ((unsigned long long)lo)|(((unsigned long long)hi)<<32);
}
#endif

void test8()
{
        unsigned long t1,t2;
        t1 = (unsigned long)GetCycleCount();
        foo();//dosomething
        t2 = (unsigned long)GetCycleCount();
        printf("Use Time:%f\n",(t2 - t1)*1.0/FREQUENCY); //FREQUENCY  CPU的频率
}

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25

 总结,方法1,2,7,8可以在linux环境下执行,方法1,2,3,4,5,6可以在windows环境下执行.其中,timeGetTime()和GetTickCount()的返回值类型为DWORD,当统计的毫妙数过大时,将会使结果归0,影响统计结果. 
测试结果,windows环境下,主频为1.6GHz,单位为秒.

1 Use Time:0 
2 Use Time:0.390000 
3 Use Time:0.388000 
4 Use Time:0.394704 
5 Use Time:0.407000 
6 Use Time:0.398684

相关文章
|
13天前
|
编译器 C语言 C++
【C++初阶(九)】C++模版(初阶)----函数模版与类模版
【C++初阶(九)】C++模版(初阶)----函数模版与类模版
18 0
|
16天前
|
自然语言处理 测试技术 持续交付
现代软件测试方法与挑战
传统软件测试方法在当前快速发展的软件开发环境下面临着诸多挑战,因此,现代软件测试方法的探索与应用显得尤为重要。本文将介绍几种现代软件测试方法,并探讨其在应对软件开发挑战方面的作用。
10 0
|
18天前
|
安全 测试技术
深入理解白盒测试:方法、工具与实践
【4月更文挑战第7天】 在软件开发的质量控制过程中,白盒测试是确保代码逻辑正确性的关键步骤。不同于黑盒测试关注于功能和系统的外部行为,白盒测试深入到程序内部,检验程序结构和内部逻辑的正确性。本文将探讨白盒测试的核心技术,包括控制流测试、数据流测试以及静态分析等方法,同时介绍当前流行的白盒测试工具,并讨论如何在实际项目中有效实施白盒测试。文章的目标是为软件测试工程师提供一份综合性指南,帮助他们更好地理解和应用白盒测试技术。
|
23天前
|
存储 缓存 C++
C++链表常用的函数编写(增查删改)内附完整程序
C++链表常用的函数编写(增查删改)内附完整程序
|
25天前
|
存储 安全 编译器
【C++】类的六大默认成员函数及其特性(万字详解)
【C++】类的六大默认成员函数及其特性(万字详解)
35 3
|
28天前
|
安全 程序员 C++
【C++ 基本知识】现代C++内存管理:探究std::make_系列函数的力量
【C++ 基本知识】现代C++内存管理:探究std::make_系列函数的力量
101 0
|
28天前
|
存储 算法 数据管理
C++中利用随机策略优化二叉树操作效率的实现方法
C++中利用随机策略优化二叉树操作效率的实现方法
77 1
|
29天前
|
设计模式 安全 C++
【C++ const 函数 的使用】C++ 中 const 成员函数与线程安全性:原理、案例与最佳实践
【C++ const 函数 的使用】C++ 中 const 成员函数与线程安全性:原理、案例与最佳实践
71 2
|
29天前
|
存储 算法 数据库
【C/C++ 数据结构 】树的 四种表示方法
【C/C++ 数据结构 】树的 四种表示方法
30 0
|
29天前
|
安全 编译器 程序员
【C++ 泛型编程 高级篇】C++ 编程深掘:静态成员函数检查的艺术与实践
【C++ 泛型编程 高级篇】C++ 编程深掘:静态成员函数检查的艺术与实践
63 0

热门文章

最新文章