快速入门开发实现订单类图片识别结果抽象解析

宜信技术学院 2019-11-12

Java核心技术 算法 test 图片识别

一、背景

面对订单数据纸质文件或图片,仅靠人眼识别的话效率很低,需引入机器学习来识别和解析图片以提高效率。当前市面上已有收费的图片识别服务,包括阿里、百度等,识别效果较好,但针对订单类图片,不仅要关注图片上的文字,还要关注文字所在的行列,来分出每条数据和数据详细字段。

本文主要介绍一种针对订单类图片识别结果进行行列解析的抽象流程和方案,帮助提高开发效率。

注:本文只提供思路,不提供源码。另外,本文不介绍人工智能图片识别,感兴趣的同学可以上网查询相关资料。

二、解析流程

对于图像处理,opencv算是比较优秀的工具,因此将其选做本文图像处理首选软件。

  • 为了使图片识别率更高,需要先做图片矫正,这里采用较为简单的霍夫变换加去噪声点算法矫正图片。
  • 图片矫正后,调用图片识别服务获取结果,一般结果格式包括响应码、错误描述、文字块列表(文字和四点坐标)等。
登录 后评论
下一篇
云栖号资讯小编
1821人浏览
2020-04-07
相关推荐
常用API接口汇总
2719人浏览
2018-01-05 15:56:00
系统重构的道与术
1533人浏览
2019-12-17 14:31:09
0
0
0
3471