基于融合计算?蚂蚁金服的在线机器学习是如何做的

缪克卢汉 2019-09-18

蚂蚁金服科技

金融领域越来越多的活动场景,如双十一、双十二、财富日、新春大促,具有活动持续时间短强度高的特点,解决场景中的计算冷启动问题,优化系统效率和用户体验的需求越来越多。在生产环境的应用中,还需要满足高吞吐和端到端强数据一致性的需求,解决高维稀疏特征的大模型的训练、更新和服务问题。

在线机器学习,能够根据线上反馈数据,实时快速地进行模型调整,使得模型及时反映线上的变化,提高线上预测的准确率,能够有效的解决上述的一些问题,在金融场景也得到越来越多的应用。

基于融合计算的在线学习,通过打通流计算和机器学习两种计算模式,将不同系统间的数据传输转化为同一系统内部数据和计算之间、计算和计算之间,从而将不同的数据和计算的组织方式衔接在一起。在性能方面,通过内存间的数据共享减少数据的序列化和反序列化,大幅减少网络和计算开销,减少了60%的机器资源使用,将端

登录 后评论
下一篇
corcosa
16558人浏览
2019-10-08
相关推荐
1
1
0
1555