深入理解 Java 中 SPI 机制

本文涉及的产品
云原生数据库 PolarDB MySQL 版,Serverless 5000PCU 100GB
云数据库 RDS MySQL Serverless,0.5-2RCU 50GB
简介: SPI(Service Provider Interface),是JDK内置的一种服务提供发现机制,本文由浅入深地介绍了Java SPI机制。

本文首发于 vivo互联网技术 微信公众号 
链接:https://mp.weixin.qq.com/s/vpy5DJ-hhn0iOyp747oL5A
作者:姜柱

SPI(Service Provider Interface),是JDK内置的一种服务提供发现机制,本文由浅入深地介绍了Java SPI机制。

一、简介

SPI(Service Provider Interface),是JDK内置的一种服务提供发现机制,可以用来启用框架扩展和替换组件,主要是被框架的开发人员使用,比如java.sql.Driver接口,其他不同厂商可以针对同一接口做出不同的实现,MySQL和PostgreSQL都有不同的实现提供给用户,而Java的SPI机制可以为某个接口寻找服务实现。Java中SPI机制主要思想是将装配的控制权移到程序之外,在模块化设计中这个机制尤其重要,其核心思想就是解耦

SPI与API区别:

  • API是调用并用于实现目标的类、接口、方法等的描述;

  • SPI是扩展和实现以实现目标的类、接口、方法等的描述;

换句话说,API 为操作提供特定的类、方法,SPI 通过操作来符合特定的类、方法。

参考:https://stackoverflow.com/questions/2954372/difference-between-spi-and-api?answertab=votes#tab-top

SPI整体机制图如下:

当服务的提供者提供了一种接口的实现之后,需要在classpath下的META-INF/services/目录里创建一个以服务接口命名的文件,这个文件里的内容就是这个接口的具体的实现类。当其他的程序需要这个服务的时候,就可以通过查找这个jar包(一般都是以jar包做依赖)的META-INF/services/中的配置文件,配置文件中有接口的具体实现类名,可以根据这个类名进行加载实例化,就可以使用该服务了。JDK中查找服务的实现的工具类是:java.util.ServiceLoader。

二、应用场景

SPI扩展机制应用场景有很多,比如Common-Logging,JDBC,Dubbo等等。

SPI流程:

  1. 有关组织和公式定义接口标准

  2. 第三方提供具体实现: 实现具体方法, 配置 META-INF/services/${interface_name} 文件

  3. 开发者使用

比如JDBC场景下:

  • 首先在Java中定义了接口java.sql.Driver,并没有具体的实现,具体的实现都是由不同厂商提供。

  • 在MySQL的jar包mysql-connector-java-6.0.6.jar中,可以找到META-INF/services目录,该目录下会有一个名字为java.sql.Driver的文件,文件内容是com.mysql.cj.jdbc.Driver,这里面的内容就是针对Java中定义的接口的实现。

  • 同样在PostgreSQL的jar包PostgreSQL-42.0.0.jar中,也可以找到同样的配置文件,文件内容是org.postgresql.Driver,这是PostgreSQL对Java的java.sql.Driver的实现。

三、使用demo

1.定义一个接口HelloSPI。

package com.vivo.study.spidemo.spi;
public interface HelloSPI {
    void sayHello();
}

2.完成接口的多个实现。

package com.vivo.study.spidemo.spi.impl;
import com.vivo.study.spidemo.spi.HelloSPI;
public class ImageHello implements HelloSPI {
    public void sayHello() {
        System.out.println("Image Hello");
    }
}
package com.vivo.study.spidemo.spi.impl;
import com.vivo.study.spidemo.spi.HelloSPI;
public class TextHello implements HelloSPI {
    public void sayHello() {
        System.out.println("Text Hello");
    }
}

在META-INF/services/目录里创建一个以com.vivo.study.spidemo.spi.HelloSPI的文件,这个文件里的内容就是这个接口的具体的实现类。

具体内容如下:

com.vivo.study.spidemo.spi.impl.ImageHello
com.vivo.study.spidemo.spi.impl.TextHello

3.使用 ServiceLoader 来加载配置文件中指定的实现

package com.vivo.study.spidemo.test
import java.util.ServiceLoader;
import com.vivo.study.spidemo.spi.HelloSPI;
public class SPIDemo {
    public static void main(String[] args) {
        ServiceLoader<HelloSPI> serviceLoader = ServiceLoader.load(HelloSPI.class);
        // 执行不同厂商的业务实现,具体根据业务需求配置
        for (HelloSPI helloSPI : serviceLoader) {
            helloSPI.sayHello();
        }
    }
}

输出结果如下:

Image Hello
Text Hello

四、源码分析

// ServiceLoader实现了Iterable接口,可以遍历所有的服务实现者
public final class ServiceLoader<S> implements Iterable<S>
{
    // 查找配置文件的目录
    private static final String PREFIX = "META-INF/services/";
    // 表示要被加载的服务的类或接口
    private final Class<S> service;
    // 这个ClassLoader用来定位,加载,实例化服务提供者
    private final ClassLoader loader;
    // 访问控制上下文
    private final AccessControlContext acc;
    // 缓存已经被实例化的服务提供者,按照实例化的顺序存储
    private LinkedHashMap<String,S> providers = new LinkedHashMap<>();
    // 迭代器
    private LazyIterator lookupIterator; 
}
// 服务提供者查找的迭代器
public Iterator<S> iterator() {
    return new Iterator<S>() {
        Iterator<Map.Entry<String,S>> knownProviders
            = providers.entrySet().iterator();
        // hasNext方法
        public boolean hasNext() {
            if (knownProviders.hasNext())
                return true;
            return lookupIterator.hasNext();
        }
        // next方法
        public S next() {
            if (knownProviders.hasNext())
                return knownProviders.next().getValue();
            return lookupIterator.next();
        }
    };
}
// 服务提供者查找的迭代器
private class LazyIterator implements Iterator<S> {
    // 服务提供者接口
    Class<S> service;
    // 类加载器
    ClassLoader loader;
    // 保存实现类的url
    Enumeration<URL> configs = null;
    // 保存实现类的全名
    Iterator<String> pending = null;
    // 迭代器中下一个实现类的全名
    String nextName = null;
 
    public boolean hasNext() {
        if (nextName != null) {
            return true;
        }
        if (configs == null) {
            try {
                String fullName = PREFIX + service.getName();
                if (loader == null)
                    configs = ClassLoader.getSystemResources(fullName);
                else
                    configs = loader.getResources(fullName);
            } catch (IOException x) {
                fail(service, "Error locating configuration files", x);
            }
        }
        while ((pending == null) || !pending.hasNext()) {
            if (!configs.hasMoreElements()) {
                return false;
            }
            pending = parse(service, configs.nextElement());
        }
        nextName = pending.next();
        return true;
    }
 
    public S next() {
        if (!hasNext()) {
            throw new NoSuchElementException();
        }
        String cn = nextName;
        nextName = null;
        Class<?> c = null;
        try {
            c = Class.forName(cn, false, loader);
        } catch (ClassNotFoundException x) {
            fail(service,"Provider " + cn + " not found");
        }
        if (!service.isAssignableFrom(c)) {
            fail(service, "Provider " + cn  + " not a subtype");
        }
        try {
            S p = service.cast(c.newInstance());
            providers.put(cn, p);
            return p;
        } catch (Throwable x) {
            fail(service, "Provider " + cn + " could not be instantiated: " + x, x);
        }
        throw new Error();          // This cannot happen
    }
}

首先,ServiceLoader实现了Iterable接口,所以它有迭代器的属性,这里主要都是实现了迭代器的hasNext和next方法。这里主要都是调用的lookupIterator的相应hasNext和next方法,lookupIterator是懒加载迭代器。

其次,LazyIterator中的hasNext方法,静态变量PREFIX就是”META-INF/services/”目录,这也就是为什么需要在classpath下的META-INF/services/目录里创建一个以服务接口命名的文件。

最后,通过反射方法Class.forName()加载类对象,并用newInstance方法将类实例化,并把实例化后的类缓存到providers对象中,(LinkedHashMap类型) 然后返回实例对象。

五、不足

1.不能按需加载,需要遍历所有的实现,并实例化,然后在循环中才能找到我们需要的实现。如果不想用某些实现类,或者某些类实例化很耗时,它也被载入并实例化了,这就造成了浪费。

2.获取某个实现类的方式不够灵活,只能通过 Iterator 形式获取,不能根据某个参数来获取对应的实现类。

3.多个并发多线程使用 ServiceLoader 类的实例是不安全的。

六、规避

针对以上的不足点,我们在SPI机制选择时,可以考虑使用dubbo实现的SPI机制。

具体参考: http://dubbo.apache.org/zh-cn/blog/introduction-to-dubbo-spi.html

相关实践学习
基于CentOS快速搭建LAMP环境
本教程介绍如何搭建LAMP环境,其中LAMP分别代表Linux、Apache、MySQL和PHP。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
目录
相关文章
|
1月前
|
Java
Java并发编程中的锁机制
【2月更文挑战第22天】 在Java并发编程中,锁机制是一种重要的同步手段,用于保证多个线程在访问共享资源时的安全性。本文将介绍Java锁机制的基本概念、种类以及使用方法,帮助读者深入理解并发编程中的锁机制。
|
1月前
|
Java 程序员
Java中的异常处理机制
【2月更文挑战第22天】在Java编程中,异常处理是一个重要的概念。它允许程序员在程序执行过程中遇到错误时,对错误进行处理,而不是让程序崩溃。本文将介绍Java中的异常处理机制,包括异常的分类、如何捕获和处理异常以及自定义异常等内容。
17 1
|
1月前
|
存储 Java 数据库
|
1月前
|
Java
深入了解Java中的锁机制
深入了解Java中的锁机制
|
1月前
|
Java 程序员 编译器
认识Java 的反射机制
反射Reflection被视为动态语言的关键,反射机制允许程序在执行期间借助于Reflection API取得任何类的内部信息,并能直接操作任意对象的内部属性及方法。反射是一种功能强大且复杂的机制。使用它的主要人员是工具构造者,而不是应用程序员。
27 5
|
25天前
|
开发框架 Java API
java反射机制的原理与简单使用
java反射机制的原理与简单使用
17 1
|
13天前
|
安全 Java 调度
深入理解Java中的线程安全与锁机制
【4月更文挑战第6天】 在并发编程领域,Java语言提供了强大的线程支持和同步机制来确保多线程环境下的数据一致性和线程安全性。本文将深入探讨Java中线程安全的概念、常见的线程安全问题以及如何使用不同的锁机制来解决这些问题。我们将从基本的synchronized关键字开始,到显式锁(如ReentrantLock),再到读写锁(ReadWriteLock)的讨论,并结合实例代码来展示它们在实际开发中的应用。通过本文,读者不仅能够理解线程安全的重要性,还能掌握如何有效地在Java中应用各种锁机制以保障程序的稳定运行。
|
19天前
|
Java 程序员 开发者
深入理解Java异常处理机制
在Java编程中,异常处理是确保程序健壮性与稳定性的重要组成部分。本文旨在深度剖析Java异常处理机制的核心概念、结构及其实际应用策略,帮助开发者更好地理解并运用异常处理来优化程序设计。我们将从Java异常体系结构入手,探讨try-catch-finally语句块的执行流程,分析自定义异常的必要性与实现方式,并通过实例演示如何有效地管理和处理异常情况。
23 3
|
25天前
|
设计模式 XML 存储
java中的反射机制
java中的反射机制
12 1
|
1月前
|
Java