1对多业务,数据库水平切分架构一次搞定 | 架构师之路

简介: 本文将以“帖子中心”为例,介绍“1对多”类业务,随着数据量的逐步增大,数据库性能显著降低,数据库水平切分相关的架构实践:

本文将以“帖子中心”为例,介绍“1对多”类业务,随着数据量的逐步增大,数据库性能显著降低,数据库水平切分相关的架构实践:

如何来实施水平切分

水平切分后常见的问题

典型问题的优化思路及实践

一、什么是1对多关系

所谓的“1对1”,“1对多”,“多对多”,来自数据库设计中的“实体-关系”ER模型,用来描述实体之间的映射关系。

1对1

一个用户只有一个登录名,一个登录名只对应一个用户

一个uid对应一个login_name,一个login_name只对应一个uid

这是一个1对1的关系。

1对多

一个用户可以发多条微博,一条微博只有一个发送者

一个uid对应多个msg_id,一个msg_id只对应一个uid

这是一个1对多的关系。

多对多

一个用户可以关注多个用户

一个用户也可以被多个粉丝关注

这是一个多对多的关系。

二、帖子中心业务分析

image.png

帖子中心是一个典型的1对多业务。
image.png

一个用户可以发布多个帖子,一个帖子只对应一个发布者。

任何脱离业务的架构设计都是耍流氓,先来看看帖子中心对应的业务需求。

帖子中心,是一个提供帖子发布/修改/删除/查看/搜索的服务。

写操作:

发布(insert)帖子

修改(update)帖子

删除(delete)帖子

读操作:

通过tid查询(select)帖子实体,单行查询

通过uid查询(select)用户发布过的帖子,列表查询

帖子检索(search),例如通过时间、标题、内容搜索符合条件的帖子

在数据量较大,并发量较大的时候,通常通过元数据与索引数据分离的架构来满足不同类型的需求:
image.png

架构中的几个关键点:

tiezi-center:帖子服务

tiezi-db:提供元数据存储

tiezi-search:帖子搜索服务

tiezi-index:提供索引数据存储

MQ:tiezi-center与tiezi-search通讯媒介,一般不直接使用RPC调用,而是通过MQ对两个子系统解耦(为何这么解耦,请参见《到底什么时候该使用MQ?》)

其中,tiezi-center和tiezi-search分别满足两类不同的读需求:
image.png

如上图所示:

tid和uid上的查询需求,可以由tiezi-center从元数据读取并返回

其他类检索需求,可以由tiezi-search从索引数据检索并返回

对于写需求:

image.png

如上图所示:

增加,修改,删除的操作都会从tiezi-center发起

tiezi-center修改元数据

tiezi-center将信息修改通知发送给MQ

tiezi-search从MQ接受修改信息

tiezi-search修改索引数据

tiezi-search,搜索架构不是本文的重点(外置索引架构设计,请参见《100亿数据1万属性数据架构设计》),后文将重点描述帖子中心元数据这一块的水平切分设计。

三、帖子中心元数据设计

通过帖子中心业务分析,很容易了解到,其核心元数据为:

Tiezi(tid, uid, time, title, content, …);

其中:

tid为帖子ID,主键

uid为用户ID,发帖人

time, title, content …等为帖子属性

image.png

数据库设计上,在业务初期,单库就能满足元数据存储要求,其典型的架构设计为:

tiezi-center:帖子中心服务,对调用者提供友好的RPC接口

tiezi-db:对帖子数据进行存储

在相关字段上建立索引,就能满足相关业务需求:

帖子记录查询,通过tid查询,约占读请求量90%

select * from t_tiezi where tid=$tid

帖子列表查询,通过uid查询其发布的所有帖子,约占读请求量10%

select * from t_tiezi where uid=$uid

四、帖子中心水平切分-tid切分法

当数据量越来越大时,需要对帖子数据的存储进行线性扩展。

既然是帖子中心,并且帖子记录查询量占了总请求的90%,很容易想到通过tid字段取模来进行水平切分:

image.png

这个方法简单直接,优点:

100%写请求可以直接定位到库

90%的读请求可以直接定位到库

缺点:

一个用户发布的所有帖子可能会落到不同的库上,10%的请求通过uid来查询会比较麻烦

image.png

如上图,一个uid访问需要遍历所有库。

五、帖子中心水平切分-uid切分法

有没有一种切分方法,确保同一个用户发布的所有帖子都落在同一个库上,而在查询一个用户发布的所有帖子时,不需要去遍历所有的库呢?

答:使用uid来分库可以解决这个问题。

新出现的问题:如果使用uid来分库,确保了一个用户的帖子数据落在同一个库上,那通过tid来查询,就不知道这个帖子落在哪个库上了,岂不是还需要遍历全库,需要怎么优化呢?

答:tid的查询是单行记录查询,只要在数据库(或者缓存)记录tid到uid的映射关系,就能解决这个问题。

新增一个索引库:

t_mapping(tid, uid);

这个库只有两列,可以承载很多数据

即使数据量过大,索引库可以利用tid水平切分

这类kv形式的索引结构,可以很好的利用cache优化查询性能

一旦帖子发布,tid和uid的映射关系就不会发生变化,cache的命中率会非常高

使用uid分库,并增加索引库记录tid到uid的映射关系之后,每当有uid上的查询:

image.png

可以通过uid直接定位到库。

每当有tid上的查询:
image.png

先查询索引表,通过tid查询到对应的uid

再通过uid定位到库

这个方法的优点:

一个用户发布的所以帖子落在同一个库上

10%的请求过过uid来查询列表,可以直接定位到库

索引表cache命中率非常高,因为tid与uid的映射关系不会变

缺点:

90%的tid请求,以及100%的修改请求,不能直接定位到库,需要先进行一次索引表的查询,当然这个查询非常块,通常在5ms内可以返回

数据插入时需要操作元数据与索引表,可能引发潜在的一致性问题

六、帖子中心水平切分-基因法

有没有一种方法,既能够通过uid定位到库,又不需要建立索引表来进行二次查询呢,这就是本文要叙述的“1对多”业务分库最佳实践,基因法。

什么是分库基因?

通过uid分库,假设分为16个库,采用uid%16的方式来进行数据库路由,这里的uid%16,其本质是uid的最后4个bit决定这行数据落在哪个库上,这4个bit,就是分库基因。

什么是基因法分库?

在“1对多”的业务场景,使用“1”分库,在“多”的数据id生成时,id末端加入分库基因,就能同时满足“1”和“多”的分库查询需求。

image.png

如上图所示,uid=666的用户发布了一条帖子(666的二进制表示为:1010011010):

使用uid%16分库,决定这行数据要插入到哪个库中

分库基因是uid的最后4个bit,即1010

在生成tid时,先使用一种分布式ID生成算法生成前60bit(上图中绿色部分)

将分库基因加入到tid的最后4个bit(上图中粉色部分)

拼装成最终的64bit帖子tid(上图中蓝色部分)

(怎么生成60bit分布式唯一ID,请参见《分布式ID生成算法》)

这般,保证了同一个用户发布的所有帖子的tid,都落在同一个库上,tid的最后4个bit都相同,于是:

通过uid%16能够定位到库

通过tid%16也能定位到库

潜在问题一:同一个uid发布的tid落在同一个库上,会不会出现数据不均衡?

答:只要uid是均衡的,每个用户发布的平均帖子数是均衡的,每个库的数据就是均衡的。

潜在问题二:最开始分16库,分库基因是4bit,未来要扩充成32库,分库基因变成了5bit,那怎么办?

答:需要提前做好容量预估,例如事先规划好5年内数据增长256库足够,就提前预留8bit基因。

七、总结

将以“帖子中心”为典型的“1对多”类业务,在架构上,采用元数据与索引数据分离的架构设计方法:

帖子服务,元数据满足uid和tid的查询需求

搜索服务,索引数据满足复杂搜索寻求

对于元数据的存储,在数据量较大的情况下,有三种常见的切分方法:

tid切分法,按照tid分库,同一个用户发布的帖子落在不同的库上,通过uid来查询要遍历所有库

uid切分法,按照uid分库,同一个用户发布的帖子落在同一个库上,需要通过索引表或者缓存来记录tid与uid的映射关系,通过tid来查询时,先查到uid,再通过uid定位库

基因法,按照uid分库,在生成tid里加入uid上的分库基因,保证通过uid和tid都能直接定位到库

对于1对多的业务场景,分库架构不再是瓶颈。

相关实践学习
RocketMQ一站式入门使用
从源码编译、部署broker、部署namesrv,使用java客户端首发消息等一站式入门RocketMQ。
消息队列 MNS 入门课程
1、消息队列MNS简介 本节课介绍消息队列的MNS的基础概念 2、消息队列MNS特性 本节课介绍消息队列的MNS的主要特性 3、MNS的最佳实践及场景应用 本节课介绍消息队列的MNS的最佳实践及场景应用案例 4、手把手系列:消息队列MNS实操讲 本节课介绍消息队列的MNS的实际操作演示 5、动手实验:基于MNS,0基础轻松构建 Web Client 本节课带您一起基于MNS,0基础轻松构建 Web Client
目录
相关文章
|
1月前
|
SQL NoSQL 前端开发
基于BS架构的饰品购物平台设计与实现(程序+文档+数据库)
基于BS架构的饰品购物平台设计与实现(程序+文档+数据库)
|
2月前
|
存储 监控 安全
360 企业安全浏览器基于阿里云数据库 SelectDB 版内核 Apache Doris 的数据架构升级实践
为了提供更好的日志数据服务,360 企业安全浏览器设计了统一运维管理平台,并引入 Apache Doris 替代了 Elasticsearch,实现日志检索与报表分析架构的统一,同时依赖 Doris 优异性能,聚合分析效率呈数量级提升、存储成本下降 60%....为日志数据的可视化和价值发挥提供了坚实的基础。
360 企业安全浏览器基于阿里云数据库 SelectDB 版内核 Apache Doris 的数据架构升级实践
|
3月前
|
存储 缓存 关系型数据库
鱼和熊掌如何兼得?一文解析RDS数据库存储架构升级
阿里云RDS率先推出新型存储类型通用云盘,提供低延迟、低成本、高持久性的用户体验。
鱼和熊掌如何兼得?一文解析RDS数据库存储架构升级
|
1月前
|
存储 SQL 分布式计算
TiDB整体架构概览:构建高效分布式数据库的关键设计
【2月更文挑战第26天】本文旨在全面概述TiDB的整体架构,深入剖析其关键组件和功能,从而帮助读者理解TiDB如何构建高效、稳定的分布式数据库。我们将探讨TiDB的计算层、存储层以及其他核心组件,并解释这些组件是如何协同工作以实现卓越的性能和扩展性的。通过本文,读者将能够深入了解TiDB的整体架构,为后续的学习和实践奠定坚实基础。
|
1月前
|
SQL 存储 数据管理
数据库系统架构与DBMS功能探微:现代信息时代数据管理的关键
数据库系统架构与DBMS功能探微:现代信息时代数据管理的关键
35 1
|
1月前
|
SQL NoSQL 数据库
深入浅出:微服务架构下的数据库事务管理
【2月更文挑战第12天】 在当今微服务架构日益流行的背景下,如何有效地管理跨服务的数据库事务成为了开发与维护中的一大挑战。本文旨在探讨微服务环境下数据库事务管理的关键技术和策略,包括但不限于分布式事务的基本概念、常见的解决方案(如两阶段提交、补偿事务等),以及这些方案在实际应用中的优缺点比较。通过深入浅出的方式,本文希望能够帮助读者更好地理解并应对微服务架构下的数据库事务管理问题,进而提升系统的稳定性和可靠性。
|
2月前
|
NoSQL 数据管理 数据库
浅谈微服务架构下的数据库设计策略
在当今快速发展的软件工程领域,微服务架构以其灵活性和可扩展性成为了众多企业和开发者的首选。然而,随着服务的细分,数据管理和存储面临着前所未有的挑战。本文将探讨微服务架构下的数据库设计策略,包括服务间数据的独立性、事务一致性问题的处理、以及数据迁移和备份的最佳实践。我们将通过对比传统单体架构与微服务架构下的数据库设计差异,提出几种有效的数据库设计方案,旨在为开发者提供在微服务环境下处理复杂数据问题的思路和方法。
48 0
|
2月前
|
敏捷开发 弹性计算 架构师
浅谈微服务架构下的数据库设计与实践
在当今快速发展的软件工程领域,微服务架构因其高度的模块化和灵活性而受到广泛欢迎。然而,随之而来的是对数据库设计和管理提出了新的挑战。本文将探讨在微服务架构下,如何有效地设计和实践数据库以支持服务的独立性、数据的一致性和系统的扩展性。我们将从微服务的数据库隔离策略谈起,深入分析数据库的分库分表、事务管理、数据一致性解决方案等关键技术,并通过实例说明如何在实际项目中应用这些原则和技术。本文旨在为软件开发者和架构师提供一份指南,帮助他们在微服务架构的环境下,更好地进行数据库设计和管理。
204 1
|
11天前
|
API 数据库 开发者
构建高效可靠的微服务架构:后端开发的新范式
【4月更文挑战第8天】 随着现代软件开发的复杂性日益增加,传统的单体应用架构面临着可扩展性、维护性和敏捷性的挑战。为了解决这些问题,微服务架构应运而生,并迅速成为后端开发领域的一股清流。本文将深入探讨微服务架构的设计原则、实施策略及其带来的优势与挑战,为后端开发者提供一种全新视角,以实现更加灵活、高效和稳定的系统构建。
18 0
|
9天前
|
Kubernetes 安全 Java
构建高效微服务架构:从理论到实践
【4月更文挑战第9天】 在当今快速迭代与竞争激烈的软件市场中,微服务架构以其灵活性、可扩展性及容错性,成为众多企业转型的首选。本文将深入探讨如何从零开始构建一个高效的微服务系统,覆盖从概念理解、设计原则、技术选型到部署维护的各个阶段。通过实际案例分析与最佳实践分享,旨在为后端工程师提供一套全面的微服务构建指南,帮助读者在面对复杂系统设计时能够做出明智的决策,并提升系统的可靠性与维护效率。