【Spark Summit East 2017】使用Spark进行时间序列分析

小猫吃鱼569 2017-02-18

云栖社区 python 大数据 java HTTPS spark scala aliyun 大数据分析 MaxCompute

更多精彩内容参见云栖社区大数据频道https://yq.aliyun.com/big-data;此外,通过Maxcompute及其配套产品,低廉的大数据分析仅需几步,详情访问https://www.aliyun.com/product/odps


本讲义出自Simon Ouellette在Spark Summit East 2017上的演讲,主要介绍了在Spark上与时间序列数据进行交互的Scala / Java / Python库——spark-timeseries,演讲中分享了spark-timeseries的总体设计,目前实现的功能,并将提供一些用法示例。因为项目还处于早期阶段,演讲也介绍了spark-timeseries当前的缺点和未来spark-timeseries项目的发展路线图。


c8af5ee86b919aea80d17481adfa927925c2f993

2e00fa345f79cd08a7709509da63d50d0ab629c9

c7574fb8feaf6b34672b1c80bddcd00ef818f6ef

9c1cb2a417b565f17288317be1e43de5c681afde

308f7d06fc1fb58285c34aa3db497ae1db521fec

95978cc04b65b6ffaca55b713524f67e6fa849fc

a4f21d70f40dd69de6320535c5cfbec8e738e7bc

9612afc4492ae6be73cae01bb77ee50b2c96a2a2

2a03fe0277977bb7452e5555f464a02ca016a723

e7f1638dff0443843af391005a83deacf20e2105

0e28f8f3fa08788e8fd35c9e0e348a97bd2914fc

0f93ae0a9a75b26f37d7cdb5c6bd2a3133e546e6

6e2153bb32bb8f93af18a029a731f8728b76d122

21e3e95369ccda94e9747a725680d3d9f1872591

adfedb11b4425f2a97d48872c479906f26e6fcc2

42869a6de13a537f57ae7e9420f114b1068d17ed

8e1ff6861ae4a4553ca0abaaaf55df3b392667a4

977cb90f4c8a243809d8ec19032365e54b4a1f72

cd369ef03399bf665e5f4d7561e38144332ee952

ff1a73f830ab0609058376822228dff5e324c8ae

6f5d21e111685d2b6cac11573ef831efb00b8b41

291ada9c5b3b3edff7888815a3b1f70763a69231

50b004f69733ae1c519152d7034af890b1ffc4bd

d2f2baf7469cb1395322f69bdf0b71a6712a0d73

5068fd0cdc26ded67cb0a63fe9e4b5cbee4b1c22


e42bcbe4e36bf821ae7ab992876cc6662959fab1

8be56b999d91de5fdd96ece80425164430aa4db6

c40a131979df02f179f6ab76778e1b9252906fdd

4bf8379e940d596bfc937307b6f1690c1a3d7a26

f3eb409ea10dca9655ef855cdbb223045eb43e84

aaf0de0b57944586bdd9eeadbdb57b9625bda982

294ac2957a6f41c7df4e3c9431afa33cd7a5356b

c849b293415af9c261a8a9c75bfa993045fa047d

登录 后评论
下一篇
云栖号资讯小编
16868人浏览
2020-07-13
相关推荐
1
1
0
8219