天桥调参师秘籍:一份深度学习超参微调技术指南

简介: 一份关于深度学习参数调整指南,涉及学习率、批量大小、动量和权重衰减四种超参数的调参经验,适合在工程实践中尝试应用。

随着深度学习的兴起,越来越多的人从事算法工程师这一岗位。有时候他们自嘲自己为“天桥调参师”。当然,算法工程师的工作内容并没有那么简单,因为设置超参数的过程需要专业知识和广泛的试验和试错过程。尤其是针对学习率(learning rate)、批量大小(batch size)、动量( momentum)和权重衰减(weight decay)这些超参数而言,没有简单易行的方法来设置。

1


深度学习模型充满了超参数,在如此高维空间中找到这些参数的最佳值并不是一项容易的挑战。在讨论找到最佳超参数的方法之前,首先了解这些超参数:学习率、批量大小、动量和权重衰减。这些超参数类似于开关旋钮,可以在模型训练期间进行调整。为了使得模型能够获得最佳结果,需要找到这些超参数的最佳值。

梯度下降

梯度下降是训练机器学习算法中常用的优化技术。训练机器学习算法的主要目的是调整权重w以最小化损失函数或成本函数。通过最小化成本函数,就可以找到产生最佳模型性能的参数[1]。
回归问题的典型损失函数图类似于碗的形状,如下所示。

2


在梯度下降算法中,首先随机模型参数,并计算每次学习迭代的误差,不断更新模型参数以更接近导致最小成本的值。梯度下降算法将梯度乘以一个标量(学习率),以确定下一个点。
如果用dW和db作为更新参数W和b的梯度,梯度下降算法如下:

1_J6d0_3brWTtq1YhLrSyEMA


如果学习率很小,那么训练会更加可靠,但花费的时间也更多,因为每次移动的步长很小。
如果学习率很大,那么训练可能不收敛。权重变化可能很大,以至于优化器错失最优化并使得损失变大。因此,最终目标是找到可以快速获得最小损失的最佳学习率。

3


一般而言,可以将梯度下降视为在山谷中滚动的球。希望它能够在停留山脉的最深处,但有时可能会出错。

4


根据球开始滚动的位置,它可能会停留在山谷的底部。但不是最低的一个,这称为局部最小值。初始化模型权重的方式可能会导致局部最小值。为了避免这种情况,可以随机始化权重向量。
用2-D表示损失面,如下所示:

5


红点是全局最小值,希望能够达到这一点。使用梯度下降方法,更新将如下所示:

6


随着梯度下降的每次迭代,向上和向下振荡移动到局部最优。如果使用更大的学习率,那么垂直振荡将具有更高的幅度。这种垂直振荡会减慢梯度下降过程,并阻止设置更大的学习率,而学习速率太小会使梯度下降变慢。

目标是希望在垂直方向上学习更慢,在水平方向上学习更快,这将有助于更快地达到全局最小值。

为了实现这一点,可以使用具有动量的梯度下降 [2]。
梯度下降:

7


在动量方面,采用dW和db的指数加权平均值,而不是每个时期单独使用dW和db。

8


其中 β是另一个称为动量的超参数,取值范围从0到1。它设置先前值的平均值与当前值之间的权重,以计算新的加权平均值。
计算指数加权平均值后更新参数。

9


通过使用dW和db的指数加权平均值,将垂直方向上的振荡平均化为接近零。然而,在水平方向上,所有导数都指向水平方向的右侧,因此水平方向上的平均值仍然相当大。它允许算法采用更直接的路径朝向局部最优并阻尼垂直振荡。基于此,算法最终会在局部最优处进行几次迭代。

10


有三种梯度下降的方法:

批量梯度下降(Batch gradient descent: )

  • 使用所有的训练实例来更新每次迭代中的模型参数;
  • 通过准确估计误差梯度来缓慢收敛;

随机梯度下降(Stochastic Gradient Descent)

  • 在每次迭代中仅使用单个训练实例更新参数。训练实例通常是随机选择的;
  • 通过估计错误梯度快速收敛;

小批量梯度下降(Mini-batch Gradient Descent)

  • 一次取b个示例:训练时不是使用所有的示例,而是将训练集划分为称为批处理的较小尺寸,每次取b个示例用来更新模型参数;
  • 小批量梯度下降试图在随机梯度下降的稳健性和批量梯度下降的效率之间找到平衡;
  • 小批量梯度下降是深度学习领域中最常用的梯度下降方法。缺点是它引入了额外的超参数'b';

搜索最佳配置的方法:网格搜索和随机搜索

网格搜索

在网格搜索[3]中,尝试每个可能的参数配置。
步骤:

  • 定义一个n维网格,其中每个都为超参数映射。例如n =(learning_rate, batch_size)
  • 对于每个维度,定义可能值的范围:例如batch_size = [4,8,16,32]learning_rate = [0.1,0.01,0.0001]
  • 搜索所有可能的配置并等待结果建立最佳配置:例如C1 =(0.1,4) - > acc = 92%C2 =(0.01,4) - > acc = 92.3%等;

随着维度的增多,搜索将在时间复杂度上发生爆炸。当维度小于或等于4时,通常使用这种方法。虽然它最终能保证找到最佳配置,但它仍然不是优选的,最好是使用随机搜索。

随机搜索

随机搜索[4]首先从配置空间中随机选取一个点,使用随机搜索更广泛地探索超参数空间。这可以在更少的迭代次数中找到最佳配置。例如:

11


在网格布局中,很容易注意到,即使已经训练了9个模型,而每个变量只使用了3个值。然而,使用随机搜索,我们不太可能不止一次地选择相同的变量,将使用9个不同的值为每个变量训练9个模型。更多详细分析,请参阅 该文
尽管随机搜索比网格搜索表现更好,但这两种方法在计算上仍然是昂贵且耗时的。在2018年,Leslie在其经典论文中提出了关于识别最佳超参数的各种方法的详细报告[5]。其中最好的方法是基于通过检查测试/验证损失以寻找欠拟合和过拟合的曲线来找到二者之间的平衡,以便争取最佳的超参数集合。

超参数调整过程无异于在钢丝上走路,以实现欠拟合和过拟合之间的平衡。

方法

  • 1.通过在训练早期监控验证/测试损失,观察分析训练曲线,通过几个时期来调整模型结构和超参数;
  • 2.在训练过程早期测试或验证损失的欠拟合或过拟合对于调整超参数是有用的;

    12

寻找最佳超参数

学习率(LR)

如果学习率太小,则可能发生过拟合。较高的学习率有助于正则训练,但如果学习率过大,训练就会出现误差。因此,可以进行短距离网格搜索以找到收敛或发散的学习率,但还有另一种方法称为“周期性学习率(CLR)”。
实验表明,训练期间使用不同的学习率总体上是有益的,因此建议在一个取值范围内周期性地改变学习率,而不是将其设定为固定值。让学习率在一定范围内变化,而不是采用逐步、固定或指数级减少学习率值。即设置好最小和最大边界,学习率在这些边界之间循环变化。

13

如何估算合理的最小和最大边界值?

LR范围测试:运行模型几个epoch,同时让学习率在高低学习率值之间线性增加。对于浅层的3层架构,最大设置为0.01,而对于resnet这样的网络,学习率最大可以设置为3.0

14


从一轮循环确定最大学习速率,并将最大值的十分之一作为最小学习率的表现也不错[6]。

批量大小(Batch size)

与学习率不同,其值不影响计算训练时间。批量大小受硬件内存的限制,而学习率则不然。建议使用适合硬件内存的较大批量大小,并使用更大的学习速率。
如果服务器有多个GPU,则总批量大小是单个GPU上的批量大小乘以GPU的数量。

周期性动量(Cyclical Momentum)

动量和学习率密切相关。最佳学习率取决于动量,而动量又取决于学习率。与学习率一样,在不引起训练不稳定的情况下尽可能设置大的动量值是很有价值的。

查找学习率和动量组合的步骤

  • 使用循环学习率:最佳训练步骤是循环增加学习率,初始化一个小的学习率,使其开始收敛,并减少周期动量。当学习率增加时,使用递减的循环动量加快收敛并且当稳定训练后,并设置更大的学习率;

    15


左:学习率周期,右:动量周期

  • 使用恒定学习率:如果使用恒定的学习率,那么大的恒定动量(即0.9-0.99)将起到伪增加学习率的作用并加速训练。但是,使用过大的动量值会导致训练结果很差。

无论是循环学习速率还是恒定学习速率,可以尝试在0.9到0.99范围内设定动量值,并从中选择一个表现最佳值。

权重衰减

体重衰减是正则化的一种形式,它在训练中起着重要作用,因此需要适当设定[7]。权重衰减被定义为将每个时期的梯度下降中的每个权重乘以因子λ(0 <λ<1)。
一般而言,可以测试权重衰减值为1 /10³1 /10⁴1 /10⁵0。较小的数据集和模型结构设置较大的权重衰减值,而较大的数据集和更深的模型结构设置较小的值。
如果使用恒定的学习率而不是使用学习率范围进行搜索,则最佳权重衰减会有所不同。由于较大的学习率提供正则化,因此较小的权重衰减值是最佳的。

总结

学习率:

  • 执行学习率范围测试以确定“大”的学习率。
  • 一轮测试确定最大学习速率,将最小学习速率设置为最大学习速率的十分之一。

动量:

  • 用短期动量值0.990.970.950.9进行测试,以获得动量的最佳值;
  • 如果使用周期学习率计划,最好从该最大动量值开始循环设置动量,并随着学习率的增加而减小到0.80.85

批量大小:

  • 根据硬件条件使用尽可能大的批量大小,然后比较不同批量大小的性能;
  • 小批量添加正规化的效果大,而大批量添加的正则化效果小,因此在适当平衡正规化效果的同时利用好它;
  • 使用更大的批量通常会更好,这样就可以使用更大的学习率;

权重衰减:

  • 网格搜索以确定适当的幅度,但通常不需要超过一个有效数字精度;
  • 更复杂的数据集需要较少的正则化,因此设置为较小的权重衰减值,例如10^-410^-510^-60
  • 浅层结构需要更多的正则化,因此设置更大的权重衰减值,例如10^-210^-310^-4

参考文献:

[1] https://www.jeremyjordan.me/gradient-descent/
[2] https://engmrk.com/gradient-descent-with-momentum/
[3] https://blog.floydhub.com/guide-to-hyperparameters-search-for-deep-learning-models/
[4] http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
[5] https://arxiv.org/pdf/1803.09820.pdf
[6] https://arxiv.org/pdf/1506.01186.pdf
[7] https://papers.nips.cc/paper/563-a-simple-weight-decay-can-improve-generalization.pdf
[8] https://www.analyticsvidhya.com/blog/2018/11/neural-networks-hyperparameter-tuning-regularization-deeplearning/

作者信息

Javaid Nabi, 机器学习专家
本文由阿里云云栖社区组织翻译。
文章原标题《Hyper-parameter Tuning Techniques in Deep Learning》,译者:海棠,审校:Uncle_LLD。
文章简译,更为详细的内容,请查看原文

相关文章
|
2天前
|
机器学习/深度学习 传感器 自动驾驶
基于深度学习的图像识别技术在自动驾驶领域的应用
【5月更文挑战第18天】随着科技的发展,深度学习技术在各个领域的应用越来越广泛。特别是在自动驾驶领域,基于深度学习的图像识别技术已经成为了关键技术之一。本文将详细介绍基于深度学习的图像识别技术在自动驾驶领域的应用,包括其原理、实现方法以及面临的挑战和未来发展趋势。
20 5
|
2天前
|
机器学习/深度学习 数据采集 传感器
基于深度学习的图像识别技术在自动驾驶系统中的应用
【5月更文挑战第18天】 随着人工智能技术的飞速发展,特别是深度学习在图像识别领域的突破性进展,自动驾驶技术已经从科幻走向现实。本文旨在探讨如何将基于深度学习的图像识别技术集成到自动驾驶系统中,以提升车辆的环境感知能力、决策效率及安全性。文中不仅回顾了当前自动驾驶中图像识别的关键挑战,还介绍了几种前沿的深度学习模型及其在处理复杂交通场景下的有效性。此外,本文还将讨论数据预处理、增强技术以及模型优化策略对提高自动驾驶系统性能的重要性。
|
3天前
|
机器学习/深度学习 人工智能 自动驾驶
探索基于深度学习的图像识别技术在自动驾驶系统中的应用
【5月更文挑战第17天】 随着人工智能技术的飞速发展,尤其是深度学习在图像处理和识别领域的突破性进展,自动驾驶汽车的研发与实现已逐渐成为可能。本文旨在探讨深度学习技术在图像识别中的关键作用,并分析其在自动驾驶系统中的具体应用。通过回顾卷积神经网络(CNN)的基本结构和工作原理,本文阐述了深度学习模型如何从大量数据中学习特征,并在复杂的道路环境中准确识别行人、车辆、交通标志等关键要素。此外,文章还讨论了深度学习技术在提高自动驾驶安全性方面的潜力及面临的挑战。
|
3天前
|
机器学习/深度学习 传感器 数据采集
基于深度学习的图像识别技术在自动驾驶中的应用
【5月更文挑战第17天】 本文聚焦于深度学习技术在自动驾驶领域的应用,特别是图像识别系统的设计与优化。文章首先概述了自动驾驶中图像识别的重要性及其挑战,接着介绍了深度学习在此领域内的基础理论与关键技术。随后,文中详细阐述了一个基于卷积神经网络(CNN)的图像识别模型构建过程,包括数据预处理、模型训练和验证策略。最后,通过实验结果分析,展示了所提出方法在提高自动驾驶系统准确性和鲁棒性方面的潜力。本文旨在为自动驾驶研究者和技术开发者提供一种高效、可靠的图像识别解决方案,以促进该技术的实际应用。
10 2
|
3天前
|
机器学习/深度学习 传感器 自动驾驶
基于深度学习的图像识别技术在自动驾驶系统中的应用
【5月更文挑战第17天】 随着人工智能技术的飞速发展,尤其是深度学习在图像识别领域的突破性进展,自动驾驶汽车逐渐成为现实。本文旨在探讨基于深度学习的图像识别技术如何被集成到自动驾驶系统中,以提供实时、准确的环境感知能力。文中首先介绍了深度学习的基本原理及其在图像处理中的关键作用,随后详细阐述了几种主流的深度学习模型如卷积神经网络(CNN)和递归神经网络(RNN),并讨论了它们在自动驾驶车辆环境感知、决策制定和导航中的实际应用。此外,文章还分析了目前该领域所面临的挑战,包括数据集质量、模型泛化能力和计算资源限制等问题,并对未来的发展趋势进行了展望。
|
3天前
|
机器学习/深度学习 传感器 自动驾驶
基于深度学习的图像识别技术在自动驾驶领域的应用
【5月更文挑战第17天】随着人工智能技术的飞速发展,深度学习已经成为计算机视觉领域的核心驱动力。本文旨在探讨基于深度学习的图像识别技术在自动驾驶汽车中的应用及其重要性。我们将分析卷积神经网络(CNN)在车辆检测、行人识别以及交通标志识别中的关键作用,并讨论这些技术如何提升自动驾驶系统的安全性和可靠性。此外,文章还将简要介绍最新的研究进展,以及这些技术面临的挑战和潜在的解决方案。
|
3天前
|
机器学习/深度学习 传感器 监控
基于深度学习的图像识别技术在自动驾驶系统中的应用
【5月更文挑战第17天】随着人工智能技术的飞速发展,深度学习已经成为了计算机视觉领域的核心驱动力。特别是在图像识别任务中,卷积神经网络(CNN)已经取得了突破性的进展,为自动驾驶系统提供了强有力的技术支持。本文将探讨深度学习在图像识别领域的最新发展及其在自动驾驶系统中的具体应用,同时分析目前所面临的主要挑战与未来的发展趋势。
|
4天前
|
机器学习/深度学习 传感器 自动驾驶
基于深度学习的图像识别技术在自动驾驶系统中的应用
【5月更文挑战第16天】 随着人工智能技术的突飞猛进,特别是深度学习在图像识别领域的应用,已成为推动自动驾驶技术发展的关键因素。本文旨在探讨基于深度学习的图像识别技术如何被集成到自动驾驶系统中,提高车辆的环境感知能力,确保行车安全。我们将分析卷积神经网络(CNN)和循环神经网络(RNN)等深度学习模型在处理实时交通数据中的优势,同时探讨这些技术面临的挑战和潜在的改进方向。通过实验结果验证,基于深度学习的图像识别系统能够有效提升自动驾驶汽车的导航精度与决策效率,为未来智能交通系统的实现奠定基础。
16 4
|
5天前
|
机器学习/深度学习 传感器 人工智能
基于深度学习的图像识别技术在自动驾驶系统中的应用
【5月更文挑战第15天】随着人工智能技术的飞速发展,尤其是深度学习在图像处理领域的突破性进展,自动驾驶系统得以实现更加精准和高效的环境感知。本文章深入探讨了深度学习技术在自动驾驶车辆图像识别中的运用,分析了卷积神经网络(CNN)等模型在车辆、行人以及交通标志识别上的优势与挑战。同时,本文还针对当前自动驾驶系统中存在的数据偏差、实时处理能力及安全性问题提出了潜在的解决策略,并展望了未来发展趋势。
|
5天前
|
机器学习/深度学习 传感器 自动驾驶
基于深度学习的图像识别技术在自动驾驶系统中的应用
【5月更文挑战第14天】 随着人工智能技术的突飞猛进,特别是深度学习在图像处理领域的应用,为自动驾驶汽车的环境感知和决策提供了新的解决方案。本文将探讨基于深度神经网络的图像识别技术如何增强自动驾驶系统的性能,包括车辆检测、行人识别以及交通标志识别等方面。通过分析现有文献和最新研究成果,我们概述了关键技术挑战,并提出了潜在的改进方向。此外,文章还对目前自动驾驶领域中深度学习技术的实际应用情况进行了案例分析,以期为未来研究提供参考。