2019怎样进行大数据的入门级学习?

金鑫工程师 2019-03-18

云栖社区 编程语言 linux python 大数据 Java核心技术 架构 算法 java hbase hadoop 高并发 数据挖掘 spark scala

大数据方向的工作目前分为三个主要方向:
01.大数据工程师
02.数据分析师
03.大数据科学家
04.其他(数据挖掘本质算是机器学习,不过和数据相关,也可以理解为大数据的一个方向吧)

由于本人目前是是大数据工程师的角色,我就这个方向做一些介绍

本回答目录:
一、大数据工程师的技能要求
二、大数据学习路径
三、学习资源推荐(书籍、博客、网站)


一、大数据工程师的技能要求

总结如下:

必须技能10条:
01.Java高级(虚拟机、并发)
02.Linux 基本操作
03.Hadoop(此处为侠义概念单指HDFS+MapReduce+Yarn )
04.HBase(JavaAPI操作+Phoenix )
05.Hive(Hql基本操作和原理理解)
06.Kafka 
07.Storm
08.Scala需要
09.Python
10.Spark (Core+sparksql+Spark streaming )

高阶技能6条:
11.机器学习算法以及mahout库加MLlib
12.R语言
13.Lambda 架构
14.Kappa架构
15.Kylin
16.Aluxio

二、学习路径

由于本人是从Java开发通过大概3个月的自学转到大数据开发的。大数据学习扣qun: 74零零加4一3八yi1所以我主要分享一下自己的学习路劲。

第一阶段:
01.Linux学习(跟鸟哥学就ok了)
02.Java 高级学习(《深入理解Java虚拟机》《Java高并发实战》

第二阶段:
03.Hadoop (董西成的书)
04.HBase(《HBase权威指南》)
05.Hive(《Hive开发指南》)
06.Scala(《快学Scala》)
07.Spark (《Spark 快速大数据分析》)
08.Python (跟着廖雪峰的博客学习就ok了)

第三阶段:
对应技能需求,到网上多搜集一些资料就ok了,

我把最重要的事情(要学什么告诉你了),
剩下的就是你去搜集对应的资料学习就ok了

当然如果你觉得自己看书效率太慢,你可以网上搜集一些课程,跟着课程走也OK 。这个完全根据自己情况决定。如果看书效率不高就很网课,相反的话就自己看书。

三,学习资源推荐:

01.Apache 官网
02.Stackoverflow
04.github
03.Cloudra官网
04.Databrick官网
05.过往的记忆(技术博客)
06.CSDN,51CTO 
07.至于书籍当当一搜会有很多,其实内容都差不多。

最后但却很重要一点:要多关注技术动向,持续学习。

标签:大数据   Python   Python入门   机器学习   编程语言   

登录 后评论
下一篇
我是你爱豆
12962人浏览
2019-08-22
相关推荐
大数据入门学习?
639人浏览
2019-03-17 11:05:37
0
3
0
736