Python科学计算结果的存储与读取

优惠券活动 2019-03-17

python Json 序列 并行计算 存储 数组 数据存储

Python科学计算结果的存储与读取

Python科学计算结果的存储与读取

总结于2019年3月17日  荆楚理工学院计算机工程学院

一、前言

显然,作为一名工科僧,执行科学计算,着用Python,快忘记Matlab吧。我用了二十年的时间,熟练掌握了Matlab的用法,然后,很可能,我用6个月不到的时间,选择并实现了用Python替换Matlab。虽然来到了计算机工程学院,但是科学计算是本业,不能久,然后我突然间发现,好多时候,只用pyplot显示结果,我们的计算结果,很多时候需要存储和重复调用的哪,一个图的话,若再需要数据,下次需要,难道再发费几小时重新计算?

用Python替换Matlab的理由:

(1)并行多核计算简单,效率高

之前用Matlab,并行计算需要时间几小时完成一项工作,该工作相似的计算,在Python里仅 用了2小时不到,5300多秒。可见其差异。另外,并行多核计算的代码非常简单,导入multiprocessing,定义其cpu_count,然后导入Pool,执行apply_async,调用get()获得return的结果即可,简单,强大!

(2)占地不大

Matlab现在是越来越大了,您懂得……,但并卵,安装Anaconda也不到3GB吧?我添加了许多插件了的。

(3)通用性强

这个,Python作为一门通用语言,已经成功登顶计算机语言排行榜首,不用多说了吧?

二、在Python中存储和读取科学计算结果

1、计算实例

显然,科学计算往往十分复杂,我此处用一个简单的混沌 映射序列作为后来结果的演示:

复制代码
 1 # 导入各种支持
 2 import matplotlib.pyplot as plt
 3 import numpy as np
 4 import pandas as pd
 5 import random
 6 import math
 7 import json
 8 # import redis
 9 
10 
11 # 建立科学计算
12 # Chebyshev map,初始值0。7,无关a值问题,注意取值是【-1,1】,可通过math.fabs实现切换m
13 def Chebyshev(maxIter, initial_value=0.7, a=1.0):
14 y = [0.0] * maxIter
15 for i in range(maxIter):
16 if i == 0:
17 y[i] = initial_value
18 else:
19 y[i] = math.cos(i / math.cos(y[i - 1]))
20 return y
复制代码

2、采用Json存储和读取

复制代码
# 采用json存储结果
def test_json_write():
    maxIter = 500
    chaos = Chebyshev(maxIter)
    data = { 'chaos':chaos, 'maxIter':500}
    datum = json.dumps(data, ensure_ascii=False)
    with open('chaos.json', 'w') as f:
        json.dump(data, f, indent=4, sort_keys=False)


# 采用json读取文件
def test_json_read():
    fileName = "chaos"
    with open('{}.json'.format(fileName), 'r') as fp:
        result = json.load(fp)
    chaos = result['chaos']
    maxIter = result['maxIter']
    plt.plot(chaos)
    plt.show()
复制代码

优点:一是可以使用dict字典的形式,使结果存储于JSON中,二是数据可见,通用性强;三是复用方便。

3、使用numpy的形式读取和使用

numpy提供了数组的三种存储方法,如save、load组;tofile和Fromfile组;以及savetxt和loadtxt组,三种方法均可以使用,注意前两种情况是对数组加密的,无法像json或txt一样能够显示计算结果。因此,我们在有条件的情况下,可以txt型,但若有json存储方法存在,Txt其实也没有啥优势,毕竟科学计算结果较大,txt数据文件较大时,不好读入。

 

复制代码
# 测试数组的存储方式
def test_numpy_save():
    maxIter = 500
    chaos = Chebyshev(maxIter)
    data = np.array(chaos)
    # data.tofile('chaos.npy',format='%e')
    np.savez('chaos.npz', maxIter, chaos)


# 测试numpy文件的读取
def test_numpy_load():
    # chaos=np.fromfile('chaos.npy',dtype=np.double)
    result = np.load("chaos.npz")
    chaos = result["arr_1"]
    plt.plot(chaos)
    plt.show()
复制代码

三、总结

1、存储单个列表

如果只需要存储一个列型数据,如errro序列,则可以直接用numpy的存储方式,先将序列转换为numpy数组,使用数组的三种存储方式均是可以的。

2、多个数组可使用词曲的方式存储

当有多个需要存储的内容时,可将其转换为词典的格式,统一为data={‘key1 ’:value1, ’key2’:value2 ,……},然后采用json.dump(data,file)的格式,将数据存储为json格式。

原文地址https://www.cnblogs.com/lvqing323/p/10545711.html

登录 后评论
下一篇
我是你爱豆
18318人浏览
2019-08-22
相关推荐
如何高效入门数据科学?
692人浏览
2018-02-20 20:06:00
让Python跑得更快
975人浏览
2018-03-16 13:52:40
分布式科学计算与docker
8647人浏览
2017-12-29 15:32:07
0
0
0
653