HBase实战 | 从MySQL到HBase:数据存储方案转型的演进

本文涉及的产品
云数据库 Tair(兼容Redis),内存型 2GB
云原生多模数据库 Lindorm,多引擎 多规格 0-4节点
云数据库 MongoDB,独享型 2核8GB
推荐场景:
构建全方位客户视图
简介:

作者介绍

杨宏志,知乎首页架构负责人,主要负责首页工程化建设、工程架构优化、性能提升等工作。知乎专栏:https://zhuanlan.zhihu.com/c_195355141

本文转载自dbaplus社群(ID:dbaplus)

本文大致会从以下几个方面入手,谈谈笔者对数据存储方案选型的看法:

  • 从MySQL到HBase集群化方案的演化
  • MySQL与HBase的性能取舍
  • 不同方案的优化思路
  • 总结

一.集群化方案

1.MySQL应用的演化
MySQL与HBase说到最核心的点,是一种数据存储方案。方案本身没有对错、没有好坏,只有合适与否。相信多数公司都与MySQL有着不解之缘,部分学校的课程甚至直接以SQL语言作为数据库讲解。我想借自身经历,先来谈谈MySQL应用的演化。

只有MySQL

笔者之前曾在一家O2O创业公司工作,公司所有数据都存储在同一个MySQL里,而且没有任何主备方案。相信这是很多初创公司会用到的一个典型解决办法,当时这台MySQL为用户、订单、物流服务,同时也为线下分析服务。
image
单实例的问题:

一旦MySQL挂了,服务全部停止;

一旦MySQL的磁盘坏了,公司的所有服务都没有了(一般会定时备份数据文件)。

主从方案

随着业务增加,单个DB是无法承载这么多请求的。于是就有了主从复制、读写分离的解决方案。
image
master只负责写请求,slave同步master用来服务读请求:

  • 为了扩展读能力可以增加多个slave;
  • 允许slave同步有一定的延迟;
  • 一致性要求严格的,可以指定读主库。

主从功能的问题:

  • 需要增加管理Proxy层,分配写请求、读请求;
  • 节点故障:其它节点应该快速接管故障节点的功能。

垂直拆分
业务继续增长,master甚至无法承载所有的写请求,数据库需要按业务拆分
image
垂直拆分的问题:

线下分析,需要在业务代码里join各个表。因为拆成多个库,已经无法join了。

不容易做数据库的事务性,用户余额减少与下单成功的情况下无法使用MySQL的事务功能。

水平拆分

业务继续增长,订单表有大量的并发写入,而且已经有了几千万行数据。

单个库无法承载大量的并发写入;

上千万行的大表,数据写入可能需要调整一棵巨大的B+树;

上千万行,B+树过深,读写需要更多的磁盘IO;

很多老数据访问较少,B+树上层缓存的部分信息无用;

……

参考:大众点评订单系统分库分表实践

https://zhuanlan.zhihu.com/p/24036067
image
水平分库/分表带来的问题:

  • 维护map方案;
  • 辅助索引只能局部有效;
  • 由于分库,无法使用join等函数;由于分表count、order、group等聚合函数也无法做了;
  • 扩容:需要再次水平拆分的:修改map,迁移数据……

2.MySQL的问题
MySQL的主要瓶颈,单机单进程。CPU有限、内存/磁盘功能、连接数有限、网卡吞吐有限……
集群的限制点:

  • 关系型数据库,纵向的外键相互join;

范式参考链接:

https://zhuanlan.zhihu.com/p/20028672

  • 数据库事务性,基于单机的锁机制,无法扩展到集群中使用;
  • 全局有序列性基于B+树,数据有序聚合存储,集群化后无法保证;

数据本地存储,扩容需要迁移数据。

集群的方案:

  • 放弃部分功能,辅助索引检索、join、全局事务性、聚合函数等;
  • 水平拆分:存储KV化,用机械的map思路实现集群;
  • 扩容方案:手动导数据,开发数据迁移脚本;
  • 事务性:两阶段事务、paxos、单库事务……
  • 备份容灾:从节点同步主节点,但有一定的数据延迟;
  • 服务稳定性:主节点挂了,Proxy会将从节点升级为主节点;从节点挂了会被其它从节点替换。

3.HBase集群化解决方案
水平拆分

region:拆分后的子表;

Region Server:管理这些数据的server,相当于一个MySQL实例;

.META.表存储拆分信息map。
image
单个region过大,RegionServer会将region均分为两个(自动、手工),然后更新.META.表。

扩容方案

  • RegionServer向HMaster汇报状态。HMaster为RegionServer负载均衡,调整其负责的region 。
  • 增/删RegionServer后,会为重新调整region的分配方式。

服务稳定性
RegionServer只是计算单元,挂掉后Hmaster可以随便再找一个节点代替坏节点服务。

事务性

HBase只保证行级事务,单行数据肯定存在同一台机器(单机事务很好做)。

备份容灾

  • 数据使用HDFS存储,多复本,任何一个复本挂掉都不影响功能;
  • RegionServer只是计算单元,挂掉后不影响服务。

二.性能取舍

1.数据请求流程
HBase:

  • Client会通过Zookeeper定位到 .META. 表;
  • 根据 .META. 查找需要服务的RegionServer,连接RegionServer进行读写;
  • Client会缓存 .META. 表信息,下次可以直接连到RegionServer 。

MySQL:

  • Client通过Proxy,查找需要连接的MySQL实例,连接并进行读写。
  • Rquest的路由流程,MySQL与HBase基本一致,那么RegionServer与MySQL的性能差异如何呢?

**2.HBase写得快
新增**

为什么MySQL建议自增主键?(MySQL随机插入的代价)

  • 主键索引是有序的B+树结构,新增条目的ID肯定是最大的,新增给B+结构带来的调整最小;
  • 主键索引是聚簇的:新增条目,ID是最大的。其data追加在上一次插入的后面,磁盘更容易顺序写。

辅助索引,插入基本是随机的:

  • 插入条目,可能会引起B+树结构很大的调整。

HBase可以随机插入:

  • HBase的所有插入只是写入内存memstore,只保证内存数据的有序即可(很快、很容易);
  • 为防止数据丢失写入memstore前,先写入wal(可以关闭,速度更快);
  • HBase没有辅助索引需要维护;
  • memstore写满了,申请一块新的内存,旧的memstore被后台线程刷盘,存入HFile。

**修改
MySQL数据变化引起存储变动:**

  • 数据块大小变化:磁盘空间不足,可能需要调整磁盘存储结构,引起大量的磁盘随机读写;
  • 辅助索引发生变化:可能需要重新调整辅助索引B+树。
  • HBase直接将变化写入到memstore,没有其它开销。

删除
MySQL数据删除:

  • 直接操作B+树的节点,肯定需要刷新磁盘;
  • 如果引起树结构变化,甚至可能需要多次刷新磁盘。

HBase只是在memstore记录删除标记,没有其它开销。

3.结论
HBase写入内存+后台刷盘(最多是WAL,磁盘顺序写);MySQL需要维护B+树,大量的磁盘随机读写。
MySQL要求尽量追加写(自增 ID),速度较慢;HBase可以随机插入,速度很快。
MySQL读得快
MySQL数据是本地存储的,HBase是基于HDFS,有可能数据不在本地。

B+ 树天然的全局有序

  • 根据主键查询,可以快速定位到数据所在磁盘块,只需要极少的磁盘IO即可拿到数据:通过缓存高层节点,主健查询只需要一次磁盘IO就可拿到数据;MySQL单表行数一般建议不会超过2千万,千万行以下的大表,B+树只需2~3层即可;
  • 辅助索引,提供快速定位能力:辅助索引B+树,可以快速定位到最终所需的主键ID,根据主键ID可以快速拿到所需信息。

**HBase只有局部信息,没有辅助索引
**

  • 查询会优先查找memstore,如果没有会查找Hfile(存储结构类似B+树)。如果第一个Hfile中没有所需的信息,则需要去第二、第三个Hfile中查询;如果查询的数据恰好在memstore,第一个Hfile,HBase会优于MySQL;平均下来,HBase读性能一般。减少Hfile数据以提速,小的HFile合并成大的HFile文件。这种存储结构叫LSM树(Log-structured merge-tree);
  • 如果需要检索特定的列,可能需要遍历所有Hfile,成本巨高。

MySQL成也B+,败也B+;HBase成也LSM,败也LSM。

4.附录
image

B+ 树
查询“值为25”的节点,只需要2次定位即可。

image

LSM树
查询“值为25”的节点,只需要4次定位即可。

三.优化思路
1.HBase优化点 (主要是读)
异步化

  • 后台线程将memstore写入Hfile;
  • 后台线程完成Hfile合并;
  • wal异步写入(数据有丢失的风险)。

数据就近

  • blockcache,缓存常用数据块:读请求先到memstore中查数据,查不到就到blockcache中查,再查不到就会到磁盘上读,把最近读的信息放入blockcache,基于LRU淘汰,可以减少磁盘读写,提高性能;
  • 本地化,如果Region Server恰好是HDFS的data node,Hfile会将其中一个副本放在本地;
  • 就近原则,如果数据没在本地,Region Server会取最近的data node中数据。

快速检索
基于bloomfilter过滤:

  • 正常检索,RegionServer会遍历所有Hfile查询所需数据。其中,需要遍历Hfile的索引块才能判断Hfile中是否有所需数据;
  • BloomFiler存储HFile的摘要,可以通过极少磁盘IO,快速判断当前HFile是否有所需数据:
    行缓存:快速判断Hflie是否有所需要的行,粒度较粗,存储占用少,磁盘IO少,数据较快;

列缓存:快速判断Hfile是否有所需的列,粒度较细,但存储占用较多。

基于timestamp过滤:

  • HFile基于日志追加、合并,维护了版本信息;
  • 当查询1小时内提交的信息时,可以跳过只包含1小时前数据的文件。

HFile存储结构:
HFile存储格式
参考链接:

https://link.zhihu.com/?target=https%3A//blog.csdn.net/yangbutao/article/details/8394149

image

  • Trailer存储整个Hfile的定位信息;
  • DataIndex存储Data块的索引信息:Data存储为一组磁盘块,存储数据信息;DataIndex功能类似于B+树的非叶子节点;Data每个磁盘块中的数据按key有序,加载到内存后可以用二分查找定位;Key按行 + 列族 + 列 + 时间戳生成,按字典序排序(最佳查询方式:最左匹配);
  • MetaIndex存储Meta的索引信息,Meta存储一系列元信息;MetaIndex功能类似于B+树的非叶子节点;Meta存储bloomfiler等辅助信息。

2.MySQL优化点(主要是写)
查询缓存

将SQL执行结果放入缓存。

缓存B+高层节点

一千万行的大表,一般只需要一棵3层的B+树,其中索引节点 (非叶子节点) 的大小约20MB。完全可以考虑将大部叶子节点缓存,基于主键查询只需要一次IO。

减少随机写——缓冲:延迟写/批量写

上节提到,B+树通过自增主键大量减少随机插入。由于辅助索引的存在,插入、修改、删除操作,辅助索引可能引起大量的随机IO。

  • 插入缓冲:只是将被插入数据写入insert buffer;定期将其merge到B+树;
  • 修改缓冲:类似于insert buffer的思路。

减少随机读--MRR

ELECT * FROM t WHERE key_part1 >= 1000 AND key_part1 < 2000 AND key_part2 = 10000;

# 普通操作分解:

key_part1= 1000, key_part2=1000, id = 1

select * from t where id=1

key_part1= 1001, key_part2=1000, id = 10

select * from t where id=10

...

# MRR 操作分解:

SELECT * FROM t WHERE key_part1 >= 1000 AND key_part1 < 2000 AND key_part2 = 10000;

key_part1= 1000, key_part2=1000, id = 1

buffer.append(1)

key_part1= 1000, key_part2=1000, id = 10

buffer.append(10)

...

sort(buffer)   

select * from t where id in (buffer)
 /**
AI 代码解读

索引下推

  • MySQL的server处理完索引后,会将索引其它部分传给引擎层;
  • 引擎层根据过滤条件过滤掉无用的行,减少数据量,进而优化server的性能。

3.集群化数据库的辅助索引
InnoDB的辅助索引

  • B+树全局有序,叶子节点存储的是主键。基于辅助索引定位主键,再用主键定位数据。MySQL水平切分后,没办法跨库维持建立全局有序索引:
  • 单实例维护索引,丧失了全局有序性;

再做一个基于新索引分库方案,丧失了辅助索引维护的事务性。
HBase相同问题

  • 仿照InnoDB实现辅助索引,辅助索引可以做成单独的key,其value是被索引行的key;
  • 可以做到全局信息的维护,但没法保证事务性。

4.HBase异步合并带来的好处

  • TTL:基于后台合并,TTL很容易做;
  • 数据多版本支持:基于“追加”,HBase天然的可以支持多版本;
  • 版本数量:基于后台合并,可以将太旧版本干掉。

四.总结

不知道BigTable的前辈们是出于什么思路,本人冒昧揣测一下,多少应该是受到SQL数据库的影响。个人感觉,这些或许就是一脉相承的演进,至少用这种思路学习不显突兀。HBase不是凭空而来,也绝对不是解决所有问题的万能灵丹。

最直接的存储思路肯定是“文件”,当“文件”不能满足需求,就有了数据的组织方式,进而演进到关系数据库如MySQL。

MySQL以其“单机”很好地解决了ACID问题,但是,性能再好的“单机”势必演变成“单点”瓶颈,进而,分布式思路成为必然。

最简单的是扩展读,“无限”挂slave;进而拆分写节点,多点写入:垂直拆库、水平拆库。一旦选择分布式,就涉及如何主从一致、如何发现节点、如何运维、ACID的如何保证等问题。

进而就是一系列分布式方案,而HBase就是其中一种解决思路——只读主库保证一致,水平拆分、zk等机制保证自动运维、单行级ACID。至于性能方面,由于存储思路不同,MySQL与HBase分别取舍了不同的读写性能。继而,就衍生出了如何针对性进行优化。

以这种思路,HBase不是凭空出现。以个人浅显的目光所及,没有完美的架构,也没有绝对厉害的设计。固然SQL类数据库有其独领风骚的场景,NoSQL数据库自然也有纵横驰骋的疆域,无论是哪种架构,都有自己鞭长莫及的角落。

所以,应该说任何一种方案都没有完美,只有合适。而所有的合适都是演变而来,万变不离其宗:更好的解决问题。

相关实践学习
lindorm多模间数据无缝流转
展现了Lindorm多模融合能力——用kafka API写入,无缝流转在各引擎内进行数据存储和计算的实验。
云数据库HBase版使用教程
&nbsp; 相关的阿里云产品:云数据库 HBase 版 面向大数据领域的一站式NoSQL服务,100%兼容开源HBase并深度扩展,支持海量数据下的实时存储、高并发吞吐、轻SQL分析、全文检索、时序时空查询等能力,是风控、推荐、广告、物联网、车联网、Feeds流、数据大屏等场景首选数据库,是为淘宝、支付宝、菜鸟等众多阿里核心业务提供关键支撑的数据库。 了解产品详情:&nbsp;https://cn.aliyun.com/product/hbase &nbsp; ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库&nbsp;ECS 实例和一台目标数据库&nbsp;RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&amp;RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
目录
打赏
0
0
0
0
3692
分享
相关文章
MySQL索引策略与查询性能调优实战
在实际应用中,需要根据具体的业务需求和查询模式,综合运用索引策略和查询性能调优方法,不断地测试和优化,以提高MySQL数据库的查询性能。
399 66
数据库优化:MySQL索引策略与查询性能调优实战
【10月更文挑战第27天】本文深入探讨了MySQL的索引策略和查询性能调优技巧。通过介绍B-Tree索引、哈希索引和全文索引等不同类型,以及如何创建和维护索引,结合实战案例分析查询执行计划,帮助读者掌握提升查询性能的方法。定期优化索引和调整查询语句是提高数据库性能的关键。
758 1
数据库优化:MySQL索引策略与查询性能调优实战
【10月更文挑战第26天】数据库作为现代应用系统的核心组件,其性能优化至关重要。本文主要探讨MySQL的索引策略与查询性能调优。通过合理创建索引(如B-Tree、复合索引)和优化查询语句(如使用EXPLAIN、优化分页查询),可以显著提升数据库的响应速度和稳定性。实践中还需定期审查慢查询日志,持续优化性能。
541 0
MySQL JSON数据存储结构与操作
通过本文的介绍,我们了解了MySQL中JSON数据类型的基本操作、常用JSON函数、以及如何通过索引和优化来提高查询性能。JSON数据类型为存储和操作结构化数据提供了灵活性和便利性,在现代数据库应用中具有广泛的应用前景。希望本文对您在MySQL中使用JSON数据类型有所帮助。
546 0
MySQL与Redis协同作战:优化百万数据查询的实战经验
【10月更文挑战第13天】 在处理大规模数据集时,传统的关系型数据库如MySQL可能会遇到性能瓶颈。为了提升数据处理的效率,我们可以结合使用MySQL和Redis,利用两者的优势来优化数据查询。本文将分享一次实战经验,探讨如何通过MySQL与Redis的协同工作来优化百万级数据统计。
274 5
MySQL最左前缀优化原则:深入解析与实战应用
【10月更文挑战第12天】在数据库架构设计与优化中,索引的使用是提升查询性能的关键手段之一。其中,MySQL的最左前缀优化原则(Leftmost Prefix Principle)是复合索引(Composite Index)应用中的核心策略。作为资深架构师,深入理解并掌握这一原则,对于平衡数据库性能与维护成本至关重要。本文将详细解读最左前缀优化原则的功能特点、业务场景、优缺点、底层原理,并通过Java示例展示其实现方式。
250 1
深入解析MySQL数据存储机制:从表结构到物理存储
深入解析MySQL数据存储机制:从表结构到物理存储
754 1
zabbix agent集成percona监控MySQL的插件实战案例
这篇文章是关于如何使用Percona监控插件集成Zabbix agent来监控MySQL的实战案例。
151 2
zabbix agent集成percona监控MySQL的插件实战案例
干货!python与MySQL数据库的交互实战
干货!python与MySQL数据库的交互实战
146 1
实战!MySQL主从复制一键搭建脚本分享
实战!MySQL主从复制一键搭建脚本分享
132 2