ui2code中的深度学习+传统算法应用

简介:

作者:闲鱼技术-云听

背景

在之前的文章中,我们已经提到过团队在UI自动化这方面的尝试,我们的目标是实现基于 单一图片到代码 的转换,在这个过程不可避免会遇到一个问题,就是为了从单一图片中提取出足够的有意义的结构信息,我们必须要拥有从图片中切割出想要区块(文字、按钮、商品图片等)的能力,而传统切割算法遇到复杂背景图片往往就捉襟见肘了(见下图),这个时候,我们就需要有能力把复杂前后景的图片划分为各个层级图层,再交给切割算法去处理,拿到我们期望的结构信息。


TB1B7ieqpzqK1RjSZSgXXcpAVXa-369-625.png

经过传统切割算法处理,会无法获取图片结构信息,最终只会当成一张图片处理。

在业界,图片前后景分离一直是个很麻烦的命题,业界目前比较普遍采用的解决方案是计算机视觉算法提取,或是引入人工智能来解决,但直到现在,都没有百分百完美的解决方案。那是否能引入AI来解决这个问题呢,我们来看一下,目前使用AI并拿到比较不错结果的解法是fcn+crf,基本上能够把目标物体的前景轮廓框出来,但缺点也很明显:

  • 准确率只有80%左右
  • 边缘切割无法达到像素级别
  • 打标成本非常大
  • 难以训练
  • AI是个黑盒,结果不可控

在考虑到使用AI伴随的问题之外,咱们也一起来思考下,难道AI真的是解决前后景分离的最佳解法吗?

其实不是的,我们知道,一个页面,或者说设计稿,一个有意义的前景,是具有比较明显特征的,比如说:

  • 规则的形状:线段、矩形、圆形、圆角、是否对称等
  • 形状上是否有文字,或者说是类似于文字的信息
  • 是否闭合

让我们一起来验证下这个思路的可行性。

实践结果

在尝试了非常的多计算机视觉算法之后,你会发现,没有一种算法是能够解决掉这个问题的,基本上是可能一种算法,在某种场景下是有效的,到了另外一个场景,就又失效了,而且就算是有效的场景,不同颜色复杂度下,所需要的最佳算法参数又是不相同的。如果case by case来解决的话,可以预期未来的工程会变得越来越冗杂且不好维护。

那是不是可以这样呢,找到尽可能多的前景区域,加一层过滤器过滤掉前景可能性低的,再加一层层级分配器,对搜索到的全部前景进行前后层级划分,最后对图像进行修复,填补空白后景。

咱们先来看看效果,以下查找前景的过程:


TB15meaqxTpK1RjSZFGXXcHqFXa-374-640.gif

为了避免有的前景被忽略(图片大部分是有多层的,前景里面还会嵌套前景),所以一个前景被检测到之后不会去隐藏它,导致会出现一个前景被多次检测到的情况,不过这块加一层层级分配算法就能解决了,最终得到出来的分离结果如下:

TB1uTSdqyrpK1RjSZFhXXXSdXXa-1389-691.png

逻辑概要

文字处理

OCR获取文字粗略位置

来看看例子,以下左图是闲鱼首页,右图是基于OCR给出的文字位置信息对文字区域进行标记(图中白色部分),可以看到,大致上位置是准确的 但比较粗糙 无法精确到每个文字本身 而且同一行的不同文字片段 OCR会当成一行去处理。


TB1cPGeqCzqK1RjSZFHXXb3CpXa-949-702.png

同时,也会有部分非文字的部分 也被当成文字,比如图中的banner文案:


TB1SVWdqrPpK1RjSZFFXXa5PpXa-540-959.png

切割、CNN鉴别器

对以上结果标注的位置进行切割,切割出尽可能小的单个文字区域,交给CNN判断,该文字是否是可编辑的文字,还是属于图片文案,后者将当作图片进行处理,以下是CNN代码:

"""
    ui基础元素识别
"""
# TODO 加载模型
with ui_sess.as_default(): 
    with g2.as_default():
        tf.global_variables_initializer().run()
        # Loads label file, strips off carriage return
        ui_label_lines = [line.rstrip() for line in tf.gfile.GFile("AI_models/CNN/ui-elements-NN/tf_files/retrained_labels.txt")]
        # Unpersists graph from file
        with tf.gfile.FastGFile("AI_models/CNN/ui-elements-NN/tf_files/retrained_graph.pb", 'rb') as f:
            ui_graph_def = tf.GraphDef()
            ui_graph_def.ParseFromString(f.read())
            tf.import_graph_def(ui_graph_def, name='')
        # Feed the image_data as input to the graph and get first prediction
        ui_softmax_tensor = ui_sess.graph.get_tensor_by_name('final_result:0')
# TODO 调用模型
with ui_sess.as_default():
    with ui_sess.graph.as_default():
        # UI原子级元素识别
        def ui_classify(image_path):
            # Read the image_data
            image_data = tf.gfile.FastGFile(image_path, 'rb').read()

            predictions = ui_sess.run(ui_softmax_tensor, {'DecodeJpeg/contents:0': image_data})
            # Sort to show labels of first prediction in order of confidence
            top_k = predictions[0].argsort()[-len(predictions[0]):][::-1]

            for node_id in top_k:
                human_string = ui_label_lines[node_id]
                score = predictions[0][node_id]
                print('%s (score = %s)' % (human_string, score))
                return human_string, score

文字抽离

如果是纯色背景,文字区域很好抽离,但如果是复杂背景就比较麻烦了。举个例子:


TB1HuSaqwDqK1RjSZSyXXaxEVXa-103-101.png

基于以上,我们能拿到准确的文本信息,我们逐一对各个文本信息做处理,文本的特征还是比较明显的,比如说含有多个角点,在尝试了多种算法:Harris角点检测、Canny边缘检测、SWT算法,KNN算法(把区域色块分成两部分)之后,发现KNN的效果是最好的。代码如下:
Z = gray_region.reshape((-1,1))  
Z = np.float32(Z)
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0) 
ret,label,center=cv2.kmeans(Z,K,None,criteria,10,cv2.KMEANS_RANDOM_CENTERS)
center = np.uint8(center) 
res = center[label.flatten()]
res2 = res.reshape((gray_region.shape))

抽离后结果如下:


TB1La5gqwHqK1RjSZFgXXa7JXXa-78-74.png

查找前景

强化图片边缘,弱化非边缘区域

使用卷积核对原图进行卷积,该卷积核可以强化边缘,图像平滑区域会被隐藏。

conv_kernel = [
    [-1, -1, -1],
    [-1,  8, -1],
    [-1, -1, -1]
]

卷积后,位与操作隐藏文字区域,结果如下:


TB1dJSbqCzqK1RjSZFLXXcn2XXa-363-621.png

降噪

对卷积后的图,加一层降噪处理,首先把图像转为灰度图,接着二值化,小于10像素值的噪点将被隐藏,最后使用cv2.connectedComponentsWithStats()算法消除小的噪点连通区域。

基于文字位置,开始查找轮廓

我们基于前面拿到的文字信息,选中文字左上角坐标,以这个点为种子点执行漫水填充算法,之后我们会得到一个区域,我们用cv2.findContours()来获取这个区域的外部轮廓,对轮廓进行鉴别,是否符合有效前景的特征,之后对区域取反,重新执行cv2.findContours()获取轮廓,并鉴别。

判断内外部轮廓

如果文字在轮廓内部,那拿到的区域将不会包含该区域的border边框,如果文字在轮廓外部,就能拿到包含边框的一整个有效区域(边框应该隶属于前景),所以咱们要判断文字和轮廓的位置关系(cv2.pointPolygonTest),如果在内部,会使轮廓往外扩散,知道拿到该轮廓的边框信息为止。

前景鉴别器

基于前面的步骤,我们会拿到非常多非常多的轮廓,其实绝大部分是无效轮廓以及重复检测到的轮廓,咱们需要加一层鉴别器来对这些轮廓进行过滤,来判断它是否是有效前景。

定义有效shape

我们会预先定义我们认为有意义的形状shape,比如说矩形、正方形、圆形,只要检测到的轮廓与这三个的相似度达到了设定的阀值要求,并且轮廓中还包含了文字信息,我们就认为这是一个有意义的前景,见代码:

# TODO circle
circle = cv2.imread(os.getcwd()+'/fgbgIsolation/utils/shapes/circle.png', 0)
_, contours, _ = cv2.findContours(circle, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
self.circle = contours[0]

# TODO square
square = cv2.imread(os.getcwd()+'/fgbgIsolation/utils/shapes/square.png', 0)
_, contours, _ = cv2.findContours(square, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
self.square = contours[0]

# TODO rect
rect = cv2.imread(os.getcwd()+'/fgbgIsolation/utils/shapes/rect.png', 0)
_, contours, _ = cv2.findContours(rect, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
self.rect = contours[0]

匹配shape相似度

多次尝试之后 发现score设置为3的效果是最好的。代码如下:

# TODO 检测图形相似度
def detect(self, cnt):
    shape = "unidentified"
    types = [self.square, self.rect, self.circle]
    names = ['square', 'rect', 'circle']
    for i in range(len(types)):
        type = types[i]
        score = cv2.matchShapes(type, cnt, 1, 0.0)  # score越小越相似
        # TODO 一般小于3是有意义的
        if score<3:
            shape = names[i]
            break

    return shape, score

单一匹配shape相似度的鲁棒性还是不够健壮,所以还引入了其他过滤逻辑,这里不展开。

图像修复

可以预见的,我们传入的图片只有一张,但我们划分图层之后,底层的图层肯定会出现“空白”区域,我们需要对这些区域进行修复。

计算重叠区域

需要修复的区域只在于重叠(重叠可以是多层的)的部分,其他部分我们不应该去修复。计算重叠区域的解决方案沿用了mask遮罩的思路,我们只需要计算当前层有效区域和当前层之上层有效区域的交集即可,使用cv2.bitwise_and

# mask是当前层的mask layers_merge是集合了所有前景的集合  i代表当前层的层级数 
# inpaint_mask 是要修复的区域遮罩
# TODO 寻找重叠关系
UPPER_level_mask = np.zeros(mask.shape, np.uint8)   # 顶层的前景
UPPER_level_mask = np.where(layers_merge>i, 255, 0)
UPPER_level_mask = UPPER_level_mask.astype(np.uint8)
_, contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # 查找当前层的每个前景外轮廓
overlaps_mask = np.zeros(mask.shape, np.uint8)  # 当前层的所有前景的重叠区域
for cnt in contours:
    cnt_mask = np.zeros(mask.shape, np.uint8)
    cv2.drawContours(cnt_mask, [cnt], 0, (255, 255, 255), cv2.FILLED, cv2.LINE_AA)
    overlap_mask = cv2.bitwise_and(inpaint_mask, cnt_mask, mask=UPPER_level_mask)
    overlaps_mask = cv2.bitwise_or(overlaps_mask, overlap_mask)
    
# TODO 将当前层重叠区域的mask赋值给修复mask
inpaint_mask = overlaps_mask

修复

使用修复算法cv2.INPAINT_TELEA,算法思路是:先处理待修复区域边缘上的像素点,然后层层向内推进,直到修复完所有的像素点。

# img是要修复的图像 inpaint_mask是上面提到的遮罩  dst是修复好的图像
dst = cv2.inpaint(img, inpaint_mask, 3, cv2.INPAINT_TELEA)

延展

本文大概介绍了通过计算机视觉为主,深度学习为辅的图片复杂前后景分离的解决方案,除了文中提到的部分,还有几层轮廓捕获的逻辑因为篇幅原因,未加展开,针对比较复杂的case,本方案已经能够很好的实现图层分离,但对于更加复杂的场景,比如边缘颜色复杂度高,噪点多,边缘轮廓不明显等更复杂的case,分离的精确度还有很大的提升空间。

期待能够听到更多有趣的解决方案,欢迎交流。

相关文章
|
12天前
|
机器学习/深度学习 API 语音技术
|
2天前
|
机器学习/深度学习 数据采集 自动驾驶
基于深度学习的图像识别技术在自动驾驶系统中的应用
【4月更文挑战第21天】 本文章深入探讨了深度学习技术在自动驾驶车辆图像识别领域的应用。不同于传统的摘要方式,本文将直接点出研究的核心价值和实际应用成果。我们专注于卷积神经网络(CNN)的创新设计,其在复杂道路场景下的行人和障碍物检测中的高效表现,以及这些技术如何整合到自动驾驶系统中以增强安全性和可靠性。通过实验验证,我们的模型在公开数据集上达到了行业领先水平的准确率,并且在真实世界的测试场景中展现了卓越的泛化能力。
|
2天前
|
机器学习/深度学习 算法 云计算
深度学习在图像识别中的应用与挑战
【4月更文挑战第21天】 随着计算机视觉技术的飞速发展,深度学习已经成为图像识别任务的核心动力。本文旨在探讨深度学习技术在图像识别领域的应用进展,分析其面临的主要挑战,并提出可能的解决方案。通过对卷积神经网络(CNN)的深入研究,我们揭示了其在图像分类、目标检测和语义分割中的关键作用。同时,数据不平衡、模型泛化能力和计算资源限制等问题也被详细讨论。文章最终指出了未来研究的方向,包括网络结构的优化、无监督学习的发展以及跨领域知识迁移的可能性。
|
3天前
|
机器学习/深度学习 传感器 自动驾驶
基于深度学习的图像识别技术在自动驾驶系统中的应用研究
【4月更文挑战第20天】 本研究聚焦于深度学习技术在图像识别领域的应用,并探讨其在自动驾驶系统中的实际效用。文章首先回顾了深度学习与图像处理技术的基础知识,随后详细分析了卷积神经网络(CNN)在车辆环境感知中的关键作用。通过实验数据对比分析,本文验证了所提出算法在提高自动驾驶车辆对周围环境的识别准确性和实时性方面的有效性。最后,讨论了目前技术的局限性及未来可能的研究方向,旨在为进一步的技术突破提供参考。
|
4天前
|
机器学习/深度学习 监控 算法
深度学习驱动下的智能监控革新:图像识别技术的前沿应用
【4月更文挑战第19天】 在数字时代,智能监控系统作为城市安全和效率的守护者,正经历着前所未有的技术变革。本文深入探讨了基于深度学习的图像识别技术如何重塑智能监控领域,通过算法创新提升识别准确率,实时处理大量数据,并在各种环境条件下稳定运行。我们将分析当前最前沿的技术应用案例,探讨其在实际应用中遇到的挑战及未来发展趋势,从而为相关领域的研究者和实践者提供参考和启示。
|
5天前
|
机器学习/深度学习 传感器 人工智能
基于深度学习的图像识别技术在自动驾驶系统中的应用
【4月更文挑战第18天】 随着人工智能的快速发展,深度学习技术在图像处理和识别领域取得了显著进展。特别是在自动驾驶系统中,基于深度学习的图像识别技术已成为关键技术之一。本文将探讨深度学习在自动驾驶系统中的应用,重点关注卷积神经网络(CNN)和循环神经网络(RNN)在车辆检测、行人识别和交通标志识别等方面的应用。通过对比传统图像识别方法,我们将展示深度学习技术如何提高自动驾驶系统的准确性和鲁棒性。
|
5天前
|
机器学习/深度学习 传感器 自动驾驶
基于深度学习的图像识别技术在自动驾驶系统中的应用
【4月更文挑战第18天】 随着人工智能的快速发展,特别是深度学习技术的突破性进步,图像识别已成为自动驾驶领域的核心组成部分。本文旨在探讨基于深度学习的图像识别技术如何优化自动驾驶系统的性能,并分析其在实时交通场景中处理复杂视觉信息的能力。文中将介绍几种主要的深度学习模型,包括卷积神经网络(CNN)和递归神经网络(RNN),以及它们在图像分类、目标检测和语义分割中的应用。同时,文章还将讨论当前技术面临的挑战和未来的发展方向。
|
5天前
|
机器学习/深度学习 传感器 自动驾驶
基于深度学习的图像识别技术在自动驾驶汽车中的应用
【4月更文挑战第18天】 随着人工智能技术的迅猛发展,深度学习已成为推动多个技术领域革新的关键力量。尤其在图像识别领域,深度学习技术通过模仿人类视觉系统的处理机制,显著提高了机器对视觉信息的理解和分析能力。本文将探讨深度学习在图像识别领域的核心技术原理,并重点分析其在自动驾驶汽车中的应用,如何通过精确的图像识别来增强车辆的环境感知能力,从而实现更安全、更高效的驾驶体验。
|
7天前
|
数据采集 算法 数据可视化
R语言聚类算法的应用实例
R语言聚类算法的应用实例
81 18
R语言聚类算法的应用实例
|
7天前
|
算法 数据可视化 数据挖掘
R语言社区主题检测算法应用案例
R语言社区主题检测算法应用案例
10 0