java 多线程和线程池

简介: ● 多线程 多线程的概念很好理解就是多条线程同时存在,但要用好多线程确不容易,涉及到多线程间通信,多线程共用一个资源等诸多问题。 使用多线程的优缺点: 优点: 1)适当的提高程序的执行效率(多个线程同时执行)。 2)适当的提高了资源利用率(CPU、内存等)。 缺点: 1)占用一定的内存空间。 2)线程越多CPU的调度开销越大。 3)程序的复杂度会上升。 对于多线程的示例

● 多线程

多线程的概念很好理解就是多条线程同时存在,但要用好多线程确不容易,涉及到多线程间通信,多线程共用一个资源等诸多问题。

使用多线程的优缺点:
优点:
1)适当的提高程序的执行效率(多个线程同时执行)。
2)适当的提高了资源利用率(CPU、内存等)。
缺点:
1)占用一定的内存空间。
2)线程越多CPU的调度开销越大。
3)程序的复杂度会上升。

对于多线程的示例代码感兴趣的可以自己写Demo啦,去运行体会,下面我主要列出一些多线程的技术点。

synchronized

同步块大家都比较熟悉,通过 synchronized 关键字来实现;所有加上 synchronized 的方法和块语句,在多线程访问的时候,同一时刻只能有一个线程能够访问。

wait()、notify()、notifyAll()

这三个方法是 java.lang.Object 的 final native 方法,任何继承 java.lang.Object 的类都有这三个方法。它们是Java语言提供的实现线程间阻塞和控制进程内调度的底层机制,平时我们会很少用到的。

wait():
导致线程进入等待状态,直到它被其他线程通过notify()或者notifyAll唤醒,该方法只能在同步方法中调用。

notify():
随机选择一个在该对象上调用wait方法的线程,解除其阻塞状态,该方法只能在同步方法或同步块内部调用。

notifyAll():
解除所有那些在该对象上调用wait方法的线程的阻塞状态,同样该方法只能在同步方法或同步块内部调用。

调用这三个方法中任意一个,当前线程必须是锁的持有者,如果不是会抛出一个 IllegalMonitorStateException 异常。

wait() 与 Thread.sleep(long time) 的区别

sleep():在指定的毫秒数内让当前正在执行的线程休眠(暂停执行),该线程不丢失任何监视器的所属权,sleep() 是 Thread 类专属的静态方法,针对一个特定的线程。
wait() 方法使实体所处线程暂停执行,从而使对象进入等待状态,直到被 notify() 方法通知或者 wait() 的等待的时间到。sleep() 方法使持有的线程暂停运行,从而使线程进入休眠状态,直到用 interrupt 方法来打断他的休眠或者 sleep 的休眠的时间到。
wait() 方法进入等待状态时会释放同步锁,而 sleep() 方法不会释放同步锁。所以,当一个线程无限 sleep 时又没有任何人去 interrupt 它的时候,程序就产生大麻烦了,notify() 是用来通知线程,但在 notify() 之前线程是需要获得 lock 的。另个意思就是必须写在 synchronized(lockobj) {...} 之中。wait() 也是这个样子,一个线程需要释放某个 lock,也是在其获得 lock 情况下才能够释放,所以 wait() 也需要放在 synchronized(lockobj) {...} 之中。

volatile 关键字

volatile 是一个特殊的修饰符,只有成员变量才能使用它。在Java并发程序缺少同步类的情况下,多线程对成员变量的操作对其它线程是透明的。volatile 变量可以保证下一个读取操作会在前一个写操作之后发生。线程都会直接从内存中读取该变量并且不缓存它。这就确保了线程读取到的变量是同内存中是一致的。

ThreadLocal 变量

ThreadLocal 是Java里一种特殊的变量。每个线程都有一个 ThreadLocal 就是每个线程都拥有了自己独立的一个变量,竞争条件被彻底消除了。如果为每个线程提供一个自己独有的变量拷贝,将大大提高效率。首先,通过复用减少了代价高昂的对象的创建个数。其次,你在没有使用高代价的同步或者不变性的情况下获得了线程安全。

join() 方法

join() 方法定义在 Thread 类中,所以调用者必须是一个线程,join() 方法主要是让调用该方法的 Thread 完成 run() 方法里面的东西后,再执行 join() 方法后面的代码,看下下面的"意思"代码:

Thread t1 = new Thread(计数线程一);  
Thread t2 = new Thread(计数线程二);  
t1.start();  
t1.join(); // 等待计数线程一执行完成,再执行计数线程二
t2.start();

启动 t1 后,调用了 join() 方法,直到 t1 的计数任务结束,才轮到 t2 启动,然后 t2 才开始计数任务,两个线程是按着严格的顺序来执行的。如果 t2 的执行需要依赖于 t1 中的完整数据的时候,这种方法就可以很好的确保两个线程的同步性。

Thread.yield() 方法

Thread.sleep(long time):线程暂时终止执行(睡眠)一定的时间。
Thread.yield():线程放弃运行,将CPU的控制权让出。

这两个方法都会将当前运行线程的CPU控制权让出来,但 sleep() 方法在指定的睡眠时间内一定不会再得到运行机会,直到它的睡眠时间完成;而 yield() 方法让出控制权后,还有可能马上被系统的调度机制选中来运行,比如,执行yield()方法的线程优先级高于其他的线程,那么这个线程即使执行了 yield() 方法也可能不能起到让出CPU控制权的效果,因为它让出控制权后,进入排队队列,调度机制将从等待运行的线程队列中选出一个等级最高的线程来运行,那么它又(很可能)被选中来运行。

扩展

线程调度策略

(1) 抢占式调度策略

Java运行时系统的线程调度算法是抢占式的。Java运行时系统支持一种简单的固定优先级的调度算法。如果一个优先级比其他任何处于可运行状态的线程都高的线程进入就绪状态,那么运行时系统就会选择该线程运行。新的优先级较高的线程抢占了其他线程。但是Java运行时系统并不抢占同优先级的线程。换句话说,Java运行时系统不是分时的。然而,基于Java Thread类的实现系统可能是支持分时的,因此编写代码时不要依赖分时。当系统中的处于就绪状态的线程都具有相同优先级时,线程调度程序采用一种简单的、非抢占式的轮转的调度顺序。

(2) 时间片轮转调度策略

有些系统的线程调度采用时间片轮转调度策略。这种调度策略是从所有处于就绪状态的线程中选择优先级最高的线程分配一定的CPU时间运行。该时间过后再选择其他线程运行。只有当线程运行结束、放弃(yield)CPU或由于某种原因进入阻塞状态,低优先级的线程才有机会执行。如果有两个优先级相同的线程都在等待CPU,则调度程序以轮转的方式选择运行的线程。


● 线程池

线程池的优点

1)避免线程的创建和销毁带来的性能开销。
2)避免大量的线程间因互相抢占系统资源导致的阻塞现象。
3}能够对线程进行简单的管理并提供定时执行、间隔执行等功能。

再撸一撸概念

Java里面线程池的顶级接口是 Executor,不过真正的线程池接口是 ExecutorService, ExecutorService 的默认实现是 ThreadPoolExecutor;普通类 Executors 里面调用的就是 ThreadPoolExecutor。

照例看一下各个接口的源码:

public interface Executor {
    void execute(Runnable command);
}

public interface ExecutorService extends Executor {
    void shutdown();
    List<Runnable> shutdownNow();

    boolean isShutdown();
    boolean isTerminated();

    <T> Future<T> submit(Callable<T> task);
    <T> Future<T> submit(Runnable task, T result);
    Future<?> submit(Runnable task);
    ...
}

public class Executors {
    public static ExecutorService newCachedThreadPool() {
            return new ThreadPoolExecutor(0, Integer.MAX_VALUE, 60L, TimeUnit.SECONDS, 
                            new SynchronousQueue<Runnable>());
    }
    ...
}

下面我创建的一个线程池:

ExecutorService pool = Executors.newCachedThreadPool();

Executors 提供四种线程池:

  • 1)newCachedThreadPool 是一个可根据需要创建新线程的线程池,但是在以前构造的线程可用时将重用它们。对于执行很多短期异步任务的程序而言,这些线程池通常可提高程序性能。调用 execute() 将重用以前构造的线程(如果线程可用)。如果现有线程没有可用的,则创建一个新线程并添加到池中。终止并从缓存中移除那些已有 60 秒钟未被使用的线程。因此,长时间保持空闲的线程池不会使用任何资源。注意,可以使用 ThreadPoolExecutor 构造方法创建具有类似属性但细节不同(例如超时参数)的线程池。

  • 2)newSingleThreadExecutor 创建是一个单线程池,也就是该线程池只有一个线程在工作,所有的任务是串行执行的,如果这个唯一的线程因为异常结束,那么会有一个新的线程来替代它,此线程池保证所有任务的执行顺序按照任务的提交顺序执行。

  • 3)newFixedThreadPool 创建固定大小的线程池,每次提交一个任务就创建一个线程,直到线程达到线程池的最大大小,线程池的大小一旦达到最大值就会保持不变,如果某个线程因为执行异常而结束,那么线程池会补充一个新线程。

  • 4)newScheduledThreadPool 创建一个大小无限的线程池,此线程池支持定时以及周期性执行任务的需求。

通过 ThreadPoolExecutor 的构造函数,撸一撸线程池相关参数的概念:

public ThreadPoolExecutor(int corePoolSize,
                          int maximumPoolSize,
                          long keepAliveTime,
                          TimeUnit unit,
                          BlockingQueue<Runnable> workQueue,
                          ThreadFactory threadFactory) {
    this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue, 
        threadFactory, defaultHandler);
}
  • 1)corePoolSize:线程池的核心线程数,一般情况下不管有没有任务都会一直在线程池中一直存活,只有在 ThreadPoolExecutor 中的方法 allowCoreThreadTimeOut(boolean value) 设置为 true 时,闲置的核心线程会存在超时机制,如果在指定时间没有新任务来时,核心线程也会被终止,而这个时间间隔由第3个属性 keepAliveTime 指定。

  • 2)maximumPoolSize:线程池所能容纳的最大线程数,当活动的线程数达到这个值后,后续的新任务将会被阻塞。

  • 3)keepAliveTime:控制线程闲置时的超时时长,超过则终止该线程。一般情况下用于非核心线程,只有在 ThreadPoolExecutor 中的方法 allowCoreThreadTimeOut(boolean value) 设置为 true时,也作用于核心线程。

  • 4)unit:用于指定 keepAliveTime 参数的时间单位,TimeUnit 是个 enum 枚举类型,常用的有:TimeUnit.HOURS(小时)、TimeUnit.MINUTES(分钟)、TimeUnit.SECONDS(秒) 和 TimeUnit.MILLISECONDS(毫秒)等。

  • 5)workQueue:线程池的任务队列,通过线程池的 execute(Runnable command) 方法会将任务 Runnable 存储在队列中。

  • 6)threadFactory:线程工厂,它是一个接口,用来为线程池创建新线程的。

线程池的关闭

ThreadPoolExecutor 提供了两个方法,用于线程池的关闭,分别是 shutdown() 和 shutdownNow()。

shutdown():不会立即的终止线程池,而是要等所有任务缓存队列中的任务都执行完后才终止,但再也不会接受新的任务。
shutdownNow():立即终止线程池,并尝试打断正在执行的任务,并且清空任务缓存队列,返回尚未执行的任务。

面试题

1)什么是 Executor 框架?

Executor框架在Java 5中被引入,Executor 框架是一个根据一组执行策略调用、调度、执行和控制的异步任务的框架。

无限制的创建线程会引起应用程序内存溢出,所以创建一个线程池是个更好的的解决方案,因为可以限制线程的数量并且可以回收再利用这些线程。利用 Executor 框架可以非常方便的创建一个线程池。

2)Executors 类是什么?

Executors为Executor、ExecutorService、ScheduledExecutorService、ThreadFactory 和 Callable 类提供了一些工具方法。Executors 可以用于方便的创建线程池。



文/孙福生微博(简书作者)
原文链接:http://www.jianshu.com/p/b8197dd2934c
著作权归作者所有,转载请联系作者获得授权,并标注“简书作者”。
目录
相关文章
|
1天前
|
安全 Java
java多线程(一)(火车售票)
java多线程(一)(火车售票)
|
1天前
|
安全 Java 调度
Java并发编程:深入理解线程与锁
【4月更文挑战第18天】本文探讨了Java中的线程和锁机制,包括线程的创建(通过Thread类、Runnable接口或Callable/Future)及其生命周期。Java提供多种锁机制,如`synchronized`关键字、ReentrantLock和ReadWriteLock,以确保并发访问共享资源的安全。此外,文章还介绍了高级并发工具,如Semaphore(控制并发线程数)、CountDownLatch(线程间等待)和CyclicBarrier(同步多个线程)。掌握这些知识对于编写高效、正确的并发程序至关重要。
|
1天前
|
安全 Java 程序员
Java中的多线程并发编程实践
【4月更文挑战第18天】在现代软件开发中,为了提高程序性能和响应速度,经常需要利用多线程技术来实现并发执行。本文将深入探讨Java语言中的多线程机制,包括线程的创建、启动、同步以及线程池的使用等关键技术点。我们将通过具体代码实例,分析多线程编程的优势与挑战,并提出一系列优化策略来确保多线程环境下的程序稳定性和性能。
|
2天前
|
缓存 分布式计算 监控
Java并发编程:深入理解线程池
【4月更文挑战第17天】在Java并发编程中,线程池是一种非常重要的技术,它可以有效地管理和控制线程的执行,提高系统的性能和稳定性。本文将深入探讨Java线程池的工作原理,使用方法以及在实际开发中的应用场景,帮助读者更好地理解和使用Java线程池。
|
2天前
|
存储 安全 Java
Java中的容器,线程安全和线程不安全
Java中的容器,线程安全和线程不安全
10 1
|
2天前
|
Java 开发者
Java中多线程并发控制的实现与优化
【4月更文挑战第17天】 在现代软件开发中,多线程编程已成为提升应用性能和响应能力的关键手段。特别是在Java语言中,由于其平台无关性和强大的运行时环境,多线程技术的应用尤为广泛。本文将深入探讨Java多线程的并发控制机制,包括基本的同步方法、死锁问题以及高级并发工具如java.util.concurrent包的使用。通过分析多线程环境下的竞态条件、资源争夺和线程协调问题,我们提出了一系列实现和优化策略,旨在帮助开发者构建更加健壮、高效的多线程应用。
3 0
|
3天前
|
存储 缓存 监控
Java线程池
Java线程池
31 1
|
3天前
|
缓存 监控 Java
Java并发编程:线程池与任务调度
【4月更文挑战第16天】Java并发编程中,线程池和任务调度是核心概念,能提升系统性能和响应速度。线程池通过重用线程减少创建销毁开销,如`ThreadPoolExecutor`和`ScheduledThreadPoolExecutor`。任务调度允许立即或延迟执行任务,具有灵活性。最佳实践包括合理配置线程池大小、避免过度使用线程、及时关闭线程池和处理异常。掌握这些能有效管理并发任务,避免性能瓶颈。
|
4天前
|
设计模式 运维 安全
深入理解Java并发编程:线程安全与性能优化
【4月更文挑战第15天】在Java开发中,多线程编程是提升应用程序性能和响应能力的关键手段。然而,它伴随着诸多挑战,尤其是在保证线程安全的同时如何避免性能瓶颈。本文将探讨Java并发编程的核心概念,包括同步机制、锁优化、线程池使用以及并发集合等,旨在为开发者提供实用的线程安全策略和性能优化技巧。通过实例分析和最佳实践的分享,我们的目标是帮助读者构建既高效又可靠的多线程应用。
|
8月前
|
Java 容器
Java——使用多线程模拟真实高并发业务并保证安全性(二)
Java——使用多线程模拟真实高并发业务并保证安全性(二)