Android存储系统的架构与设计

简介: 一、概述 本文讲述Android存储系统的架构与设计,基于Android 6.0的源码,涉及到最为核心的便是MountService和Vold这两个模块以及之间的交互。为了缩减篇幅,只展示部分核心代码。 MountService:Android Binder服务端,运行在system_server进程,用于跟Vold进行消息通信,比如MountService向Vold发送

一、概述

本文讲述Android存储系统的架构与设计,基于Android 6.0的源码,涉及到最为核心的便是MountService和Vold这两个模块以及之间的交互。为了缩减篇幅,只展示部分核心代码。

MountService:Android Binder服务端,运行在system_server进程,用于跟Vold进行消息通信,比如MountServiceVold发送挂载SD卡的命令,或者接收到来自Vold的外设热插拔事件。MountService作为Binder服务端,那么相应的Binder客户端便是StorageManager,通过binder IPC与MountService交互。

Vold:全称为Volume Daemon,用于管理外部存储设备的Native daemon进程,这是一个非常重要的守护进程,主要由NetlinkManager,VolumeManager,CommandListener这3部分组成。

1.1 模块架构

从模块地角度划分Android整个存储架构:


图解:

  • Linux Kernel:通过uevent向Vold的NetlinkManager发送Uevent事件;

  • NetlinkManager:接收来自Kernel的Uevent事件,再转发给VolumeManager;

  • VolumeManager:接收来自NetlinkManager的事件,再转发给CommandListener进行处理;

  • CommandListener:接收来自VolumeManager的事件,通过socket通信方式发送给MountService;

  • MountService:接收来自CommandListener的事件。

1.2 进程架构

(1)先看看Java framework层的线程:


MountService运行在system_server进程,这里查询的便是system_server进程的所有子线程,system_server进程承载整个framework所有核心服务,子线程数有很多,这里只列举与MountService模块相关的子线程。

(2)再看看Native层的线程:


Vold作为native守护进程,进程名为"/system/bin/vold",pid=387,通过ps -t可查询到该进程下所有的子进程/线程。

小技巧:有读者可能会好奇,为什么/system/bin/sdcard是子进程,而非子线程呢?要回答这个问题,有两个方法,其一就是直接看撸源码,会发现这是通过fork方式创建的,而其他子线程都是通过pthread_create方式创建的。当然其实还有个更快捷的小技巧,就是直接看上图中的第4列,这一列的含义是VSIZE,代表的是进程虚拟地址空间大小,是否共享地址空间,这是进程与线程最大的区别,再来看看/sdcard的VSIZE大小跟父进程不一样,基本可以确实/sdcard是子进程。

(3) 从进程/线程视角来看Android存储架构:


  • Java层:采用 1个主线程(system_server) + 3个子线程(VoldConnector, MountService, CryptdConnector);

  • Native层:采用 1个主线程(/system/bin/vold) + 3个子线程(vold) + 1子进程(/system/bin/sdcard);

注:图中红色字代表的进程/线程名,vold进程通过pthread_create的方式创建的3个子线程名都为vold,图中只是为了便于区别才标注为vold1, vold2, vold3,其实名称都为vold。

Android还可划分为内核空间(Kernel Space)和用户空间(User space),从上图可看出,Android存储系统在User space总共采用9个进程/线程的架构模型。当然,除了这9个进/线程,另外还会在handler消息处理过程中使用到system_server的两个子线程:android.fgandroid.io

Tips: 同一个模块可以运行在各个不同的进程/线程, 同一个进程可以运行不同模块的代码,所以从进程角度和模块角度划分看到的有所不同的.

为了阐述清楚存储系统的通信架构,主要分为以下4个过程:

  1. MountService发送消息:MountService是如何从向vold守护进程通信;

  2. MountService接收消息:MountService接收到vold发送过来的消息又是如何处理;

  3. Kernel上报事件:当存储设备发生热插拔等事件,kernel是如何通知用户空间的vold;

  4. 不请自来的广播:对于事件往往都是MountService下发,然后再收到底层的回应,但对于有些广播却非如此,而是由底层直接触发,对于MountService来说却是“不请自来”的消息。

限于篇幅过长,本文先讲述前两个过程,下一篇文章再来说说后两个过程。

1.3 类关系图



上图中4个蓝色块便是前面谈到的核心模块。

二、 通信架构

Android存储系统中涉及各个进程间通信,这个架构采用的socket,并没有采用Android binder IPC机制。这样的架构代码大量更少,整体架构逻辑也相对简单,在介绍通信过程前,先来看看MountService对象的实例化过程,那么也就基本明白进程架构中system_sever进程为了MountService服务而单独创建与共享使用到线程情况。

首先,MountService对象实例化的过程中完成是:

  1. 创建ICallbacks回调方法,FgThread线程名为"android.fg",此处用到的Looper便是线程"android.fg"中的Looper;

  2. 创建并启动线程名为"MountService"的handlerThread;

  3. 创建OBB操作的handler,IoThread线程名为"android.io",此处用到的的Looper便是线程"android.io"中的Looper;

  4. 创建NativeDaemonConnector对象

  5. 创建并启动线程名为"VoldConnector"的线程;

  6. 创建并启动线程名为"CryptdConnector"的线程;

  7. 注册监听用户添加、删除的广播;

从这里便可知道共创建了3个线程:MountService,VoldConnector,CryptdConnector,另外还会使用到系统进程中的两个线程android.fgandroid.io. 这便是在文章开头进程架构图中Java framework层进程的创建情况.

2.1 MountService发送消息

system_server进程与vold守护进程间采用socket进行通信,这个通信过程是由MountService线程向vold线程发送消息。这里以执行mount调用为例:

2.1.1 MountService.mount

public void mount(String volId) {
    //【见小节2.1.2】
    mConnector.execute("volume", "mount", vol.id, vol.mountFlags, vol.mountUserId);
}

2.1.2 NDC.execute

execute()经过层层调用到executeForList()



  • 首先,将带执行的命令mSequenceNumber执行加1操作;
  • 再将cmd(例如3 volume reset)写入到socket的输出流;

  • 通过循环与poll机制阻塞等待底层响应该操作完成的结果;

  • 有两个情况会跳出循环: 

    • 当超过1分钟未收到vold相应事件的响应码,则跳出阻塞等待;

    • 当收到底层的响应码,且响应码不属于[100,200)区间,则跳出循环。

  • 对于执行时间超过500ms的时间,则额外输出以NDC Command开头的log信息,提示可能存在优化之处。

2.1.3 FL.onDataAvailable

MountService线程通过socket发送cmd事件给vold,对于vold守护进程在启动的过程,初始化CommandListener时通过pthread_create创建子线程vold来专门监听MountService发送过来的消息,当该线程接收到socket消息时,便会调用onDataAvailable()方法


2.1.4 FL.dispatchCommand


这是用于分发从MountService发送过来的命令,针对不同的命令调用不同的类。在处理过程中遇到下面情况,则会直接发送响应吗500的应答消息给MountService

  • 当无法找到匹配的类,则会直接向MountService返回响应码500,内容"Command not recognized"的应答消息;

  • 命令参数过长导致socket管道溢出,则会发送响应码500,内容"Command too long"的应答消息。

2.1.5 CL.runCommand

例如前面发送过来的是volume mount,则会调用到CommandListener的内部类VolumeCmd的runCommand来处理该消息,并进入mount分支。


2.1.6 小节


MountService向vold发送消息后,便阻塞在图中的MountService线程的NDC.execute()方法,那么何时才会退出呢?图的后半段MonutService接收消息的过程会有答案,那便是在收到消息,并且消息的响应吗不属于区间[600,700)则添加事件到ResponseQueue,从而唤醒阻塞的MountService继续执行。关于上图的后半段介绍的便是MountService接收消息的流程。

2.2 MountService接收消息

当Vold在处理完完MountService发送过来的消息后,会通过sendGenericOkFail发送应答消息给上层的MountService。

2.2.1 响应码


  • 当执行成功,则发送响应码为500的成功应答消息;

  • 当执行失败,则发送响应码为400的失败应答消息。

不同的响应码(VoldResponseCode),代表着系统不同的处理结果,主要分为下面几大类:

响应码 事件类别 对应方法
[100, 200) 部分响应,随后继续产生事件 isClassContinue
[200, 300) 成功响应 isClassOk
[400, 500) 远程服务端错误 isClassServerError
[500, 600) 本地客户端错误 isClassClientError
[600, 700) 远程Vold进程自触发的事件 isClassUnsolicited

例如当操作执行成功,VoldConnector线程能收到类似`RCV <- {200 3 Command succeeded}的响应事件。其中对于[600,700)响应码是由Vold进程"不请自来"的事件,主要是针对disk,volume的一系列操作,比如设备创建,状态、路径改变,以及文件类型、uid、标签改变等事件都是底层直接触发,后面再会详细讲。介绍完响应码,接着继续来说说发送应答消息的过程:

2.2.2 SC.sendMsg


sendMsg经过层层调用,进入sendDataLockedv方法


2.2.3 NDC.listenToSocket

应答消息写入socket管道后,在MountService的另个线程"VoldConnector"中建立了名为vold的socket的客户端,通过循环方式不断监听Vold服务端发送过来的消息。


监听也是阻塞的过程,当收到不同的消息相应码,采用不同的行为:

  • 当响应吗不属于区间[600,700):则将该事件添加到mResponseQueue,并且触发响应事件所对应的请求事件不再阻塞到ResponseQueue.poll,那么线程继续往下执行,即前面小节[2.1.2] NDC.execute的过程。

  • 当响应码区间为[600,700):则发送消息交由mCallbackHandler处理,向线程android.fg发送Handler消息,该线程收到后回调NativeDaemonConnector的handleMessage来处理。

2.2.4 小节


三、总结

3.1 概括

本文首先从模块化和进程的视角来整体上描述了Android存储系统的架构,并分别展开对MountService, vold, kernel这三者之间的通信流程的剖析。

{1}Java framework层:采用 1个主线程(system_server) + 3个子线程(VoldConnector, MountService, CryptdConnector);MountService线程不断向vold下发存储相关的命令,比如mount, mkdirs等操作;而线程VoldConnector一直处于等待接收vold发送过来的应答事件;CryptdConnector通信原理和VoldConnector大抵相同,有兴趣地读者可自行阅读。

(2)Native层:采用 1个主线程(/system/bin/vold) + 3个子线程(vold) + 1子进程(/system/bin/sdcard);vold进程中会通过pthread_create方式来生成3个vold子线程,其中两个vold线程分别跟上层system_server进程中的线程VoldConnector和CryptdConnector通信,第3个vold线程用于与kernel进行netlink方式通信。

本文更多的是以系统的角度来分析存储系统,那么对于app来说,那么地方会直接用到的呢?其实用到的地方很多,例如存储设备挂载成功会发送广播让app知晓当前存储挂载情况;其次当app需要创建目录时,比如getExternalFilesDirs,getExternalCacheDirs等当目录不存在时都需向存储系统发出mkdirs的命令。另外,MountService作为Binder服务端,那自然而然会有Binder客户端,那就是StorageManager,这个比较简单就不再细说了,欢迎大家与Gityuan。

3.2 架构的思考

以Google原生的Android存储系统的架构设计主要采用Socket阻塞式通信方式,虽然vold的native层面有多个子线程干活,但各司其职,真正处理上层发送过来的命令,仍然是单通道的模式。

目前外置存储设备比如sdcard或者otg的硬件质量参差不齐,且随使用时间碎片化程度也越来越严重,对于存储设备挂载的过程中往往会有磁盘检测fsck_msdos或者整理fstrim的动作,那么势必会阻塞多线程并发访问,影响系统稳定性,从而造成系统ANR。

例如系统刚启动过程中reset操作需要重新挂载外置存储设备,而紧接着system_server主线程需要执行的volume user_started操作便会被阻塞,阻塞超过20s则系统会抛出Service Timeout的ANR。

目录
相关文章
|
24天前
|
搜索推荐 Android开发 iOS开发
安卓与iOS系统的用户界面设计对比分析
本文通过对安卓和iOS两大操作系统的用户界面设计进行对比分析,探讨它们在设计理念、交互方式、视觉风格等方面的差异及各自特点,旨在帮助读者更好地理解和评估不同系统的用户体验。
18 1
|
1月前
|
存储
嵌入式微处理器的系统架构中指令系统
嵌入式微处理器的系统架构中指令系统
12 0
|
1月前
|
数据库 Android开发 开发者
构建高性能微服务架构:从理论到实践构建高效Android应用:探究Kotlin协程的优势
【2月更文挑战第16天】 在当今快速迭代和竞争激烈的软件市场中,微服务架构以其灵活性、可扩展性和独立部署能力而受到企业的青睐。本文将深入探讨如何构建一个高性能的微服务系统,涵盖从理论基础到具体实现的各个方面。我们将重点讨论服务拆分策略、通信机制、数据一致性以及性能优化等关键主题,为读者提供一个清晰、实用的指南,以便在复杂多变的业务环境中构建和维护健壮的微服务体系结构。 【2月更文挑战第16天】 在移动开发领域,性能优化和流畅的用户体验是至关重要的。随着技术的不断进步,Kotlin作为一种现代编程语言,在Android开发中被广泛采用,尤其是其协程特性为异步编程带来了革命性的改进。本文旨在深入
239 5
|
2月前
|
缓存 NoSQL 关系型数据库
|
2月前
|
搜索推荐 Android开发 iOS开发
探析安卓与iOS系统的优劣
【2月更文挑战第7天】安卓与iOS是当今手机市场上最主流的两款操作系统,各有优劣。本文将从用户体验、开放程度、生态系统等方面对两者进行深入探析,以期帮助读者更好地了解它们的特点。
|
1月前
|
存储 前端开发 BI
基于云计算技术的B/S架构智能云HIS系统源码 集挂号、处方、收费、取药、病历于一体
云HIS是针对中小医院机构、乡镇卫生室推出的一套基于云端的云HIS服务平台,借助云HIS,将医院业务流程化,大大提高医院的服务效率和服务质量,为客户提供医院一体化的信息解决方案。云HIS主要功能:包含门诊收费管理,住院收费管理,门诊医生工作站,住院医生工作站,住院护士工作站,辅助检查科室管理,药房药品管理,药库药品管理,报表查询。满足诊所、中小医院业务中看诊、收费、发药、药库管理、经营分析等多环节的工作需要。
41 4
|
2月前
|
SQL 分布式计算 Hadoop
Azkaban【基础 01】核心概念+特点+Web界面+架构+Job类型(一篇即可入门Azkaban工作流调度系统)
【2月更文挑战第6天】Azkaban【基础 01】核心概念+特点+Web界面+架构+Job类型(一篇即可入门Azkaban工作流调度系统)
79 0
|
29天前
|
人工智能 运维 监控
构建高性能微服务架构:现代后端开发的挑战与策略构建高效自动化运维系统的关键策略
【2月更文挑战第30天】 随着企业应用的复杂性增加,传统的单体应用架构已经难以满足快速迭代和高可用性的需求。微服务架构作为解决方案,以其服务的细粒度、独立性和弹性而受到青睐。本文将深入探讨如何构建一个高性能的微服务系统,包括关键的设计原则、常用的技术栈选择以及性能优化的最佳实践。我们将分析微服务在处理分布式事务、数据一致性以及服务发现等方面的挑战,并提出相应的解决策略。通过实例分析和案例研究,我们的目标是为后端开发人员提供一套实用的指南,帮助他们构建出既能快速响应市场变化,又能保持高效率和稳定性的微服务系统。 【2月更文挑战第30天】随着信息技术的飞速发展,企业对于信息系统的稳定性和效率要求
|
18天前
|
机器学习/深度学习 人工智能 搜索推荐
探索安卓应用中的新趋势:人工智能驱动的智能推荐系统
传统的应用推荐系统已经无法满足用户日益增长的个性化需求。本文将探讨如何通过引入人工智能技术,构建智能推荐系统,为用户提供更加精准、个性化的应用推荐体验,进而提升应用的用户满意度和留存率。
16 0
|
18天前
|
移动开发 前端开发 数据管理
构建高效Android应用:采用MVVM架构与LiveData的全面指南
在移动开发领域,构建一个既快速又可靠的应用对于开发者来说至关重要。随着Android Jetpack组件的推出,MVVM(Model-View-ViewModel)架构和LiveData已成为实现响应式、可测试且易于维护应用的首选解决方案。本文将深入探讨如何在Android应用中实施MVVM模式,以及如何利用LiveData来优化UI组件的数据更新流程,确保用户界面与业务逻辑之间的高度解耦和流畅交互。
18 4