Java并发编程实战系列6之任务执行(Task Execution)

简介: 1. 在线程中执行任务1.1 串行的执行任务这是最经典的一个最简单的Socket server的例子,服务器的资源利用率非常低,因为单线程在等待I/O操作完成时,CPU处于空闲状态。

1. 在线程中执行任务

1.1 串行的执行任务

这是最经典的一个最简单的Socket server的例子,服务器的资源利用率非常低,因为单线程在等待I/O操作完成时,CPU处于空闲状态。从而阻塞了当前请求的延迟,还彻底阻止了其他等待中的请求被处理。

public class SingleThreadWebServer {
    public static void main(String[] args) throws IOException {
        ServerSocket socket = new ServerSocket(80);
        while (true) {
            Socket connection = socket.accept();
            handleRequest(connection);
        }
    }

    private static void handleRequest(Socket connection) {
        // request-handling logic here
    }
}

1.2 显式地为任务创建线程

任务处理从主线程中分离出来,主循环可以快速等待下一个连接,提高响应性。同时任务可以并行处理了,吞吐量也提高了。

public class ThreadPerTaskWebServer {
    public static void main(String[] args) throws IOException {
        ServerSocket socket = new ServerSocket(80);
        while (true) {
            final Socket connection = socket.accept();
            Runnable task = new Runnable() {
                public void run() {
                    handleRequest(connection);
                }
            };
            new Thread(task).start();
        }
    }
    private static void handleRequest(Socket connection) {
        // request-handling logic here
    }
}

1.3 无限制创建线程的不足

  • 线程的生命周期开销非常高
  • 资源消耗。大量的空闲线程占用内存,给GC带来压力,同时线程数量过多,竞争CPU资源开销太大。
    稳定性。容易引起GC问题,甚至OOM

2 Executor框架

任务就是一组逻辑工作单元(unit of work),而线程则是使任务异步执行的机制。

Executor接口,是代替Thread来做异步执行的入口,接口虽然简单,却为非常灵活强大的异步任务执行框架提供了基础。
提供了一种标准的方法将任务的提交与执行过程解耦,并用Runnable(无返回时)或者Callable(有返回值)表示任务。

Executor基于生产者-消费者模式
提交任务/执行任务分别相当于生产者/消费者,通常是最简单的实现生产者-消费者设计的方式了

2.1 基于Executor改造后的样例如下

img_764e49e2bfb5ee30bdf8e6ea9ffc1a8d.png

将请求处理任务的提交与任务的实际执行解耦,并且只需采用另一种不同的Executor实现,就可以改变服务器的行为,其影响远远小于修改任务提交方式带来的影响

2.2 执行策略

这一节主要介绍做一个Executor框架需要靠那些点?

在什么线程中执行任务?
任务按照什么顺序执行?FIFO/LIFO/优先级
有多少个任务可以并发执行?
队列中允许多少个任务等待?
如果系统过载了要拒绝一个任务,那么选择拒绝哪一个?如何通知客户端任务被拒绝了?
在执行任务过程中能不能有些别的动作before/after或者回调?
各种执行策略都是一种资源管理工具,最佳的策略取决于可用的计算资源以及对服务质量的要求。

因此每当看到
new Thread(runnable).start();
并且希望有一种灵活的执行策略的时候,请考虑使用Executor来代替

2.3 线程池

在线程池中执行任务比为每个任务分配一个线程优势明显:

重用线程,减少开销。
延迟低,线程是等待任务到达。
最大化挖掘系统资源以及保证稳定性。CPU忙碌但是又不会出现线程竞争资源而耗尽内存或者失败的情况。
Executors可以看做一个工厂,提供如下几种Executor的创建:

newCachedThreadPool
newFixedThreadPool
newSingleThreadExecutor
newScheduledThreadPool

2.4 Executor的生命周期

为解决执行服务的生命周期问题,Executor扩展了ExecutorService接口,添加了一些用于生命周期管理的方法


img_b7e6f3ad08789e15eeec1426911d613c.png

一个优雅停止的例子:


img_00cbcda01d8b710c7267b055c78a651c.png

增加生命周期扩展Web服务器的功能

  • 调用stop
  • 客户端请求形式

关闭

2.5 延迟任务与周期任务

使用Timer的弊端在于

  • 如果某个任务执行时间过长,那么将破坏其他TimerTask的定时精确性(执行所有定时任务时只会创建一个线程),只支持基于绝对时间的调度机制,所以对系统时钟变化敏感
  • TimerTask抛出未检查异常后就会终止定时线程(不会捕获异常)

更加合理的做法是使用ScheduledThreadPoolExecutor,只支持基于相对时间的调度
它是DelayQueue的应用场景

3 找出可利用的并行性

3.1 携带结果的任务Callable和Future

Executor框架支持Runnable,同时也支持Callable(它将返回一个值或者抛出一个异常)
在Executor框架中,已提交但是尚未开始的任务可以取消,但是对于那些已经开始执行的任务,只有他们能响应中断时,才能取消。
Future非常实用,他的API如下


img_a48979fc962f8dc0a1c4935b80ab2568.png

内部get的阻塞是靠LockSupport.park来做的,在任务完成后Executor回调finishCompletion方法会依次唤醒被阻塞的线程。

ExecutorService的submit方法接受Runnable和Callable,返回一个Future。ThreadPoolExecutor框架留了一个口子,子类可以重写newTaskFor来决定创建什么Future的实现,默认是FutureTask类。

3.2 示例:使用Future实现页面的渲染器

img_3b90c94fe1e3492fa50084bc81f75ca3.png

3.3 CompletionService: Executor与BlockingQueue

计算完成后FutureTask会调用done方法,而CompletionService集成了FutureTask,对于计算完毕的结果直接放在自己维护的BlockingQueue里面,这样上层调用者就可以一个个take或者poll出来。


img_0bacc8f12b604f855c2a476d3e260288.png

3.3 示例:使用CompletionService提高渲染性能

void renderPage(CharSequence source) {
        final List<ImageInfo> info = scanForImageInfo(source);
        CompletionService<ImageData> completionService =
                new ExecutorCompletionService<ImageData>(executor);
        for (final ImageInfo imageInfo : info)
            completionService.submit(new Callable<ImageData>() {
                public ImageData call() {
                    return imageInfo.downloadImage();
                }
            });

        renderText(source);

        try {
            for (int t = 0, n = info.size(); t < n; t++) {
                Future<ImageData> f = completionService.take();
                ImageData imageData = f.get();
                renderImage(imageData);
            }
        } catch (InterruptedException e) {
            Thread.currentThread().interrupt();
        } catch (ExecutionException e) {
            throw launderThrowable(e.getCause());
        }
    }

6.3.7 为任务设置时限

Future的get支持timeout。

6.3.8 批量提交任务

使用invokeAll方法提交List<Callable>,返回一个List<Future>

目录
相关文章
|
3天前
|
自然语言处理 Java API
Java 8的Stream API和Optional类:概念与实战应用
【5月更文挑战第17天】Java 8引入了许多重要的新特性,其中Stream API和Optional类是最引人注目的两个。这些特性不仅简化了集合操作,还提供了更好的方式来处理可能为空的情况,从而提高了代码的健壮性和可读性。
26 7
|
1天前
|
Java
Java一分钟之-并发编程:线程间通信(Phaser, CyclicBarrier, Semaphore)
【5月更文挑战第19天】Java并发编程中,Phaser、CyclicBarrier和Semaphore是三种强大的同步工具。Phaser用于阶段性任务协调,支持动态注册;CyclicBarrier允许线程同步执行,适合循环任务;Semaphore控制资源访问线程数,常用于限流和资源池管理。了解其使用场景、常见问题及避免策略,结合代码示例,能有效提升并发程序效率。注意异常处理和资源管理,以防止并发问题。
22 2
|
1天前
|
安全 Java 容器
Java一分钟之-并发编程:线程安全的集合类
【5月更文挑战第19天】Java提供线程安全集合类以解决并发环境中的数据一致性问题。例如,Vector是线程安全但效率低;可以使用Collections.synchronizedXxx将ArrayList或HashMap同步;ConcurrentHashMap是高效线程安全的映射;CopyOnWriteArrayList和CopyOnWriteArraySet适合读多写少场景;LinkedBlockingQueue是生产者-消费者模型中的线程安全队列。注意,过度同步可能影响性能,应尽量减少共享状态并利用并发工具类。
15 2
|
1天前
|
Java 程序员 调度
Java中的多线程编程:基础知识与实践
【5月更文挑战第19天】多线程编程是Java中的一个重要概念,它允许程序员在同一时间执行多个任务。本文将介绍Java多线程的基础知识,包括线程的创建、启动和管理,以及如何通过多线程提高程序的性能和响应性。
|
2天前
|
Java
深入理解Java并发编程:线程池的应用与优化
【5月更文挑战第18天】本文将深入探讨Java并发编程中的重要概念——线程池。我们将了解线程池的基本概念,应用场景,以及如何优化线程池的性能。通过实例分析,我们将看到线程池如何提高系统性能,减少资源消耗,并提高系统的响应速度。
12 5
|
2天前
|
消息中间件 安全 Java
理解Java中的多线程编程
【5月更文挑战第18天】本文介绍了Java中的多线程编程,包括线程和多线程的基本概念。Java通过继承Thread类或实现Runnable接口来创建线程,此外还支持使用线程池(如ExecutorService和Executors)进行更高效的管理。多线程编程需要注意线程安全、性能优化和线程间通信,以避免数据竞争、死锁等问题,并确保程序高效运行。
|
2天前
|
安全 Java 容器
深入理解Java并发编程:线程安全与性能优化
【5月更文挑战第18天】随着多核处理器的普及,并发编程变得越来越重要。Java提供了丰富的并发编程工具,如synchronized关键字、显式锁Lock、原子类、并发容器等。本文将深入探讨Java并发编程的核心概念,包括线程安全、死锁、资源竞争等,并分享一些性能优化的技巧。
|
2天前
|
安全 Java 开发者
Java中的多线程编程:理解与实践
【5月更文挑战第18天】在现代软件开发中,多线程编程是提高程序性能和响应速度的重要手段。Java作为一种广泛使用的编程语言,其内置的多线程支持使得开发者能够轻松地实现并行处理。本文将深入探讨Java多线程的基本概念、实现方式以及常见的并发问题,并通过实例代码演示如何高效地使用多线程技术。通过阅读本文,读者将对Java多线程编程有一个全面的认识,并能够在实际开发中灵活运用。
|
2天前
|
安全 Java
Java一分钟之-并发编程:原子类(AtomicInteger, AtomicReference)
【5月更文挑战第18天】Java并发编程中的原子类如`AtomicInteger`和`AtomicReference`提供无锁原子操作,适用于高性能并发场景。`AtomicInteger`支持原子整数操作,而`AtomicReference`允许原子更新对象引用。常见问题包括误解原子性、过度依赖原子类以及忽略对象内部状态的并发控制。要避免这些问题,需明确原子操作边界,合理选择同步策略,并精确控制原子更新。示例代码展示了如何使用这两个类。正确理解和使用原子类是构建高效并发程序的关键。
12 1
|
2天前
|
安全 Java 容器
Java一分钟之-并发编程:并发容器(ConcurrentHashMap, CopyOnWriteArrayList)
【5月更文挑战第18天】本文探讨了Java并发编程中的`ConcurrentHashMap`和`CopyOnWriteArrayList`,两者为多线程数据共享提供高效、线程安全的解决方案。`ConcurrentHashMap`采用分段锁策略,而`CopyOnWriteArrayList`适合读多写少的场景。注意,`ConcurrentHashMap`的`forEach`需避免手动同步,且并发修改时可能导致`ConcurrentModificationException`。`CopyOnWriteArrayList`在写操作时会复制数组。理解和正确使用这些特性是优化并发性能的关键。
9 1