CNN卷积神经网络

简介: 一、BP神经网络回顾人工全连接神经网络(1)每相邻两层之间的每个神经元之间都是有边相连的(2)当输入层的特征维度变得很高时,这时全连接网络需要训练              的参数就会增大很多,计算速度就会变得...

一、BP神经网络回顾


人工全连接神经网络
(1)每相邻两层之间的每个神经元之间都是有边相连的
(2)当输入层的特征维度变得很高时,这时全连接网络需要训练
              的参数就会增大很多,计算速度就会变得很慢
传统神经网络存在的问题:
(1)权值太多,计算量太大
(2)权值太多,需要大量样本进行训练

二、CNN卷积神经网络
1、CNN的主要概述
卷积层的神经元只与前一层的 部分神经元节点相连 ,即它的神经元间的连接是非全连接的,且同一层中某些神经元之间的连接的 权重w 偏置b 是共享的(即相同的)
      大量地减少了需要训练参数的数量
CNN主要特点 :减少权值,局部连接,权值共享
CNN通过 感受野 权值共享 减少了神经网络需要训练的参数的个数。
2、CNN的一般结构
输入层 :用于数据的输入
卷积层 :使用 卷积核 进行 特征提取 特征映射
激励层 :由于卷积也是一种线性运算,因此需要增加非线性映射
池化层 :压缩数据和参数的量,减小过拟合。
全连接层 :通常在 CNN 的尾部进行重新拟合,减少特征信息的损失
输出层 :用于输出结果
(1)输入层
在CNN的输入层中,(图片)数据输入的格式与全连接神经网络的输入格式(一维向量)不太一样。CNN的输入层的输入 格式保留了图片本身的结构
对于黑白的 28×28 的图片,CNN的输入是一个28×28 的的 二维神经元
对于RGB格式的28×28图片,CNN的输入则是一个 3×28×28 的 三维神经元 (RGB中的每一个颜色通道都有一个 28×28 的矩阵),如下图所示:

(2)卷积层
需要明确的几个概念:
感受视野(  local receptive fields
    即感受 上一层的部分特征。在卷积神经网络中,隐藏层中的神经元的感受视野比较小,只能看到上一次的 部分特征 ,上一层的其他特征可以通过 平移感受视野 来得到同一层的其他神经元。
卷积核
    感受视野中的 权重矩阵
共享权值( shared weights
步长( stride
    感受 视野对输入的扫描间隔称为 步长( stride
边界扩充( pad
     当 步长比较大时( stride>1 ),为了扫描到边缘的一些特征,感受视野可能会 “出界” ,这时需要对 边界扩充 (pad)
特征映射图( feature map
     通过一 个带有 卷积核 感受视野  扫描生成的下一层神经元矩阵 称为一个 特征映射图( feature map
通过以下图理解以上概念及卷积计算



(3)激励层
激励层主要对卷积层的输出进行一个 非线性映射 ,因为卷积层的计算还是一种线性计算。使用的激励函数一般为 ReLu 函数
      卷积 层和激励层通常合并在一起称为“卷积层”。
(4)池化层
当输入经过卷积层时,若感受视野比较小,布长 stride 比较小,得到的 feature map (特征映射图)还是比较大,可以通过池化层来对每一个 feature map 进行 降维操作 ,输出的深度还是不变的,依然为 feature map 的个数。
池化层也有一个“池化视野( filter )”来对 feature map 矩阵进行扫描,对“池化视野”中的 矩阵值进行计算 ,一般有两种计算方式:
   (1 Max pooling :取“池化视野”矩阵中的 最大值
   (2 Average pooling :取“池化视野”矩阵中的 平均值


(5)全连接层和输出层
全连接层 主要对特征进行重新拟合,减少特征信息的丢失。
输出层 主要准备做好最后目标结果的输出。
(6)中间还可以使用其他的功能层
归一化层 Batch Normalization ):在 CNN 中对特征的归一化
  切分层 :对某些(图片)数据的进行分区域的单独学习
   融合层 :对独立进行特征学习的分支进行融合



CNN卷积神经网络实现Mnist数据集:








参考博客资料:




目录
打赏
0
0
0
0
2
分享
相关文章
基于GA遗传优化TCN-GRU时间卷积神经网络时间序列预测算法matlab仿真
本项目基于MATLAB2022a开发,提供无水印算法运行效果预览及核心程序(含详细中文注释与操作视频)。通过结合时间卷积神经网络(TCN)和遗传算法(GA),实现复杂非线性时间序列的高精度预测。TCN利用因果卷积层与残差连接提取时间特征,GA优化超参数(如卷积核大小、层数等),显著提升模型性能。项目涵盖理论概述、程序代码及完整实现流程,适用于金融、气象、工业等领域的时间序列预测任务。
基于GA遗传优化TCN时间卷积神经网络时间序列预测算法matlab仿真
本内容介绍了一种基于遗传算法优化的时间卷积神经网络(TCN)用于时间序列预测的方法。算法运行于 Matlab2022a,完整程序无水印,附带核心代码、中文注释及操作视频。TCN通过因果卷积层与残差连接学习时间序列复杂特征,但其性能依赖超参数设置。遗传算法通过对种群迭代优化,确定最佳超参数组合,提升预测精度。此方法适用于金融、气象等领域,实现更准确可靠的未来趋势预测。
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
害虫识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了12种常见的害虫种类数据集【"蚂蚁(ants)", "蜜蜂(bees)", "甲虫(beetle)", "毛虫(catterpillar)", "蚯蚓(earthworms)", "蜚蠊(earwig)", "蚱蜢(grasshopper)", "飞蛾(moth)", "鼻涕虫(slug)", "蜗牛(snail)", "黄蜂(wasp)", "象鼻虫(weevil)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Djan
147 1
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
基于PSO粒子群优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-LSTM-SAM网络时间序列预测算法。使用Matlab2022a开发,完整代码含中文注释及操作视频。算法结合卷积层提取局部特征、LSTM处理长期依赖、自注意力机制捕捉全局特征,通过粒子群优化提升预测精度。适用于金融市场、气象预报等领域,提供高效准确的预测结果。
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)", "毒鹅膏菌(Amanita)", "牛肝菌(Boletus)", "网状菌(Cortinarius)", "毒镰孢(Entoloma)", "湿孢菌(Hygrocybe)", "乳菇(Lactarius)", "红菇(Russula)", "松茸(Suillus)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,
185 11
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
基于WOA鲸鱼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB 2022a实现时间序列预测,采用CNN-GRU-SAM网络结构,结合鲸鱼优化算法(WOA)优化网络参数。核心代码含操作视频,运行效果无水印。算法通过卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征,全连接层整合输出。数据预处理后,使用WOA迭代优化,最终输出最优预测结果。
基于GA遗传优化TCN-LSTM时间卷积神经网络时间序列预测算法matlab仿真
本项目基于MATLAB 2022a实现了一种结合遗传算法(GA)优化的时间卷积神经网络(TCN)时间序列预测算法。通过GA全局搜索能力优化TCN超参数(如卷积核大小、层数等),显著提升模型性能,优于传统GA遗传优化TCN方法。项目提供完整代码(含详细中文注释)及操作视频,运行后无水印效果预览。 核心内容包括:1) 时间序列预测理论概述;2) TCN结构(因果卷积层与残差连接);3) GA优化流程(染色体编码、适应度评估等)。最终模型在金融、气象等领域具备广泛应用价值,可实现更精准可靠的预测结果。
基于GA遗传优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本项目使用MATLAB 2022a实现时间序列预测算法,完整程序无水印。核心代码包含详细中文注释和操作视频。算法基于CNN-LSTM-SAM网络,融合卷积层、LSTM层与自注意力机制,适用于金融市场、气象预报等领域。通过数据归一化、种群初始化、适应度计算及参数优化等步骤,有效处理非线性时间序列,输出精准预测结果。
基于WOA鲸鱼优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本内容介绍了一种基于CNN-LSTM-SAM网络与鲸鱼优化算法(WOA)的时间序列预测方法。算法运行于Matlab2022a,完整程序无水印并附带中文注释及操作视频。核心流程包括数据归一化、种群初始化、适应度计算及参数更新,最终输出最优网络参数完成预测。CNN层提取局部特征,LSTM层捕捉长期依赖关系,自注意力机制聚焦全局特性,全连接层整合特征输出结果,适用于复杂非线性时间序列预测任务。
基于GWO灰狼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a,展示了时间序列预测算法的运行效果(无水印)。核心程序包含详细中文注释和操作视频。算法采用CNN-GRU-SAM网络,结合灰狼优化(GWO),通过卷积层提取局部特征、GRU处理长期依赖、自注意力机制捕捉全局特征,最终实现复杂非线性时间序列的高效预测。

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等