大数据时代数据库-云HBase架构&生态&实践

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 2018第九届中国数据库技术大会,阿里云高级技术专家、架构师封神(曹龙)带来题为大数据时代数据库-云HBase架构&生态&实践的演讲。主要内容有三个方面:首先介绍了业务挑战带来的架构演进,其次分析了ApsaraDB HBase及生态,最后分享了大数据数据库的实际案例。

2018第九届中国数据库技术大会,阿里云高级技术专家、架构师封神(曹龙)带来题为大数据时代数据库-云HBase架构&生态&实践的演讲。主要内容有三个方面:首先介绍了业务挑战带来的架构演进,其次分析了ApsaraDB HBase及生态,最后分享了大数据数据库的实际案例。
数十款阿里云产品限时折扣中赶快点击这里领券开始云上实践吧!
直播视频回顾
PPT下载请点击
以下是精彩视频内容整理:

业务的挑战

存储量量/并发计算增大

_1


现如今大量的中小型公司并没有大规模的数据,如果一家公司的数据量超过100T,且能通过数据产生新的价值,基本可以说是大数据公司了 。起初,一个创业公司的基本思路就是首先架构一个或者几个ECS,后面加入MySQL,如果有图片需求还可加入磁盘,该架构的基本能力包括事务、存储、索引和计算力。随着公司的慢慢发展,数据量在不断地增大,其通过MySQL及磁盘基本无法满足需求,只有分布式化。 这个时候MySQL变成了HBase,检索变成了Solr/ES,再ECS提供的计算力变成了Spark。但这也会面临存储量大且存储成本高等问题。

_2


另外一个趋势就是非结构化的数据越来越多,数据结构的模式不仅仅是SQL,时序、时空、graph模式也越来越多,需要一些新的存储结构或新的算法去解决这类问题,也意味着所需要做的工程量就会相对较高。

引入更多的数据

对于数据处理大致可归类为四个方面,分别是复杂性、灵活性、延迟<读,写>和分布式,其中分布式肯定是不可少的,一旦缺少分布式就无法解决大规模问题 。灵活性的意思是业务可以任意改变的;复杂性就是运行一条SQL能够访问多少数据或者说SQL是否复杂;延迟也可分为读与写的延迟。Hadoop & Spark可以解决计算复杂性和灵活性,但是解决不了延迟的问题;HBase&分布式索引、分布式数据库可以解决灵活性与延迟的问题,但由于它没有很多计算节点,所以解决不了计算复杂性的问题。Kylin(满足读延迟)在计算复杂性与延迟之间找了一个平衡点,这个平衡点就是怎样快速出报表,但对于这个结果的输入时间我们并不关心,对于大部分的报表类的需求就是这样的。每个引擎都是一定的侧重,没有银弹!

ApsaraDB HBase产品架构及改进

应对的办法

我们也不能解决所有的问题,我们只是解决其中大部分的问题。如何找到一个在工程上能够解决大部分问题的方案至关重要,应对办法:

  • 分布式:提供扩展性
  • 计算力延伸:算子+SQL,从ECS到Spark其本质其实就是一种计算力的延伸
  • 分层设计:降低复杂性,提供多模式的存储模型
  • 云化:复用资源&弹性,降低成本

基本构架

_3


首先包含了两个分离
  • 分别是HDFS与分布式Region分布式检索分离
  • SQL时空图时序Cube与分布式Region检索分离
    大致的分层机构如下:
  • 第一层:介质层,热SSD介质、温SSD&SATA 混合、冷纯SATA(做EC)
  • 第二层:分布式文件系统,也就是盘古。事实上越是底层越容易做封装优化。
  • 第三层:分布式安全隔离保障层QOS,如果我们做存储计算分离,就意味着底层的三个集群需要布三套,这样每个集群就会有几十台甚至几百台的节点,此时存储力是由大家来均摊的,这就意味着分布式安全隔离保障层要做好隔离性,引入QOS就意味着会增加延迟,此时会引入一些新的硬件(比如RDMA)去尽可能的减小延迟。
  • 第四层:分布式文件接口:HDFS & API(此层看情况可有可无)
  • 第五层:我们提供了两个组件,分布式Region-HBase与分布式检索-Solr,在研究分布索引的时候发现单机索引是相对简单的,我们提供针对二级索引采取内置的分布式Region的分布式架构,针对全文索引采取外置Solr分布式索引方案
  • 第六层:建设在分布式KV之上,有NewSQL套件、时空套件、时序套件、图套件及Cube套件
    另外,可以引入spark来分析,这个也是社区目前通用的方案

解决成本的方案

对于解决成本的方案简单介绍如下:

  • 分级存储:SSD与SATA的价格相差很多,在冷数据上,我们建议直接采取冷存储的方式 ,可以节约500%的成本
  • 高压缩比:在分级存储上有一个较好的压缩,尤其是在冷数据,我们可以提高压缩比例,另外分布式文件系统可以采取EC进一步降低存储成本,节约100%的成本
  • 基础设施共享:库存压力分担,云平台可以释放红利给客户
  • 存储与计算分离:按需计费
  • 优化性能:再把性能提升1倍左右

云数据库基本部署结构

_4


假设在北京有三个机房可用区A、B和C,我们会在可用区A中部署一个热的存储集群,在北京整体区域部一个冷的存储集群,实际上有几个可用区就可以有几个热集群,主要是保障延迟的;冷集群对延迟相对不敏感,可以地域单独部署,只要交换机满足冷集群所需的带宽即可。这样的好处是三个区共享一个冷集群,就意味着可以共享库存。

ApsaraDB HBase产品能力

我们提供两个版本,一是单节点版,其特点是给开发测试用或者可用性不高,数据量不大的场景。二是集群版本其特点是高至5000w QPS,多达10P存储与高可靠低延迟等。

  • 数据可靠性:99.99999999%:之所以可靠性可以达到如此之高,其核心的原因就是存储集群是单独部署的,其会根据机架等进行副本放置优化
  • 服务可用性:单集群99.9% 双集群99.99%。
  • 服务保障:服务未满足SLA赔付。
  • 数据备份及恢复。
  • 数据热冷分离分级存储。
  • 企业级安全:认证授权及加密。
  • 提供检索及二级索引及NewSQL能力。
  • 提供时序/图/时空/Cube相关能力。
  • 与Spark无缝集成,提供AP能力。

数据备份及恢复

_5


备份分为全量备份HFile与 增量量备份HLog;恢复分为HLog转化为HFile和BulkLoad加载。阿里云集团迄今为止已经有一万两千多台的HBase,大部分都是主备集群的,在云上由于客户成本的原因,大部分不选择主备,所以需要对数据进行备份。其难点在于备份需要引入计算资源,我们需要引入弹性的计算资源来处理备份的相关计算任务

Compaction 离线Compaction(研究中)

_6


我们在内部研究如何通FPGA对Compaction进行加速,这会使得集群运行比较平缓,特别是对计算资源少,存储量大的情况下,可以通过离线的作业处理Compaction。

组件层

我们有5中组件,NewSQL(Phoenix)、时序OpenTSDB、时空GeoMesa、图JanusGraph及Cube的Kylin,及提供HTAP能力的Spark。这里简单描述几个,如下:

NewSQL-Phoenix

客户还是比较喜欢用SQL的,Phoenix会支持SQL及二级索引,在超过1T的数据量的情况下,对事务的需求就很少(所以我们并没有支持事务);二级索引是通过再新建一张HBase表来实现的。在命中索引的情况下,万亿级别的访问基本在毫秒级别,但由于Phoenix聚合点在一个节点,所以不能做Shuffle类似的事情,同时也就不能处理复杂的计算,所以任何说我是HTAP架构的,如果不能做Shuffle,就基本不能做复杂的计算。

HTAP-Spark

_7


在HTAP-Spark这部分主要介绍一下RDD API、 SQL、直接访问HFile,它们的特点如下:
  • RDD API具有简单方便,默认支持的特点,但高并发scan大表会影响稳定性;
  • SQL支持算子下推、schema映射、各种参数调优,高并发scan大表会影响稳定性;
  • 直接访问HFile,直接访问存储不经过计算,大批量量访问性能最好,需要snapshot对齐数据。

时序-OpenTSDB & HiTSDB

TSD没有状态,可以动态加减节点,并按照时序数据的特点设计表结构,其内置针对浮点的高压缩比的算法,我们云上专业版的HiTSDB增加倒排等能力,并能够针对时序增加插值、降精度等优化。

大数据数据库的实际案例

以下简单介绍几个客户的案例,目前已经在云上ApsaraDB HBase运行,数据量基本在10T以上:

某车联网公司

_9


这是一个车联网的客户,有100万车,每辆车每10秒上传一次,每次1KB,这样一年就有300T数据,六个月以上是数据低频访问,所以他要做分级存储,把冷数据放到低介质上

某大数据控公司

_10


这是一个大数据控公司,它大约有200T+的数据量,将HBase数据 (在线实时大数据存储)作为主数据库,先用HBase做算法训练,再用HBase SQL出报表,另外做了一套ECS进行实时查以便与客户之间进行数据交换。

某社交公司

_11


社交会有大量的推荐,所以SLA要求高达99.99,并采用双集群保障,单集群读写高峰QPS 可以达到1000w+,数据量在30T左右。

某基金公司

_12


这是一个金融公司,它有10000亿以上的交易数据,目前用多个二级索引支持毫秒级别的查询,数据量在100T左右

某公司报表系统

_13

先离线建好Cube再把数据同步到HBase中,实时数据通过Blink对接进行更新,数据量在可达20T左右。

封神:真名曹龙,09年加入阿里,现任阿里云高级技术专家、架构师,专注于大数据分布式计算、数据库、存储领域,先后研发上万台Hadoop、ODPS集群,负责阿里YARN、Spark及自主研发内存计算引擎,目前为广大公共云用户提供专业的云HBase数据库及计算服务。


本文由云栖志愿小组毛鹤整理,百见编辑。

更多精彩请关注:
云数据库POLARDB版:https://www.aliyun.com/product/polardb?spm=5176.8142029.388261.347.62136d3etcPz5x
云数据库 HBase 版:https://www.aliyun.com/product/hbase?spm=5176.155538.765261.355.57227e0dLAlXGl
云数据库RDS PPAS 版:https://www.aliyun.com/product/rds/ppas?spm=5176.54432.765261.351.6e1e28f5UFqADw

相关实践学习
快速体验PolarDB开源数据库
本实验环境已内置PostgreSQL数据库以及PolarDB开源数据库:PolarDB PostgreSQL版和PolarDB分布式版,支持一键拉起使用,方便各位开发者学习使用。
7天玩转云服务器
云服务器ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,可降低 IT 成本,提升运维效率。本课程手把手带你了解ECS、掌握基本操作、动手实操快照管理、镜像管理等。了解产品详情:&nbsp;https://www.aliyun.com/product/ecs
相关文章
|
16天前
|
存储 关系型数据库 MySQL
大数据新视界--大数据大厂之MySQL 数据库课程设计:开启数据宇宙的传奇之旅
本文全面剖析数据库课程设计 MySQL,展现其奇幻魅力与严峻挑战。通过实际案例凸显数据库设计重要性,详述数据安全要点及学习目标。深入阐述备份与恢复方法,并分享优秀实践项目案例。为开发者提供 MySQL 数据库课程设计的全面指南,助力提升数据库设计与管理能力,保障数据安全稳定。
大数据新视界--大数据大厂之MySQL 数据库课程设计:开启数据宇宙的传奇之旅
|
2月前
|
人工智能 前端开发 JavaScript
代码采纳率从 22% 到 33%,通义灵码辅助数据库智能编码实践
通义灵码本质上是一个AI agent,它已经进行了大量的优化。然而,为了更完美或有效地调用模型的潜在能力,我们在使用时仍需掌握一些技巧。通常,大多数人在使用通义灵码时会直接上手,这是 AI agent 的一个优势,即 zero shot 使用,无需任何上下文即可直接使用通义灵码的能力。
|
1天前
|
存储 关系型数据库 MySQL
大数据新视界 --面向数据分析师的大数据大厂之 MySQL 基础秘籍:轻松创建数据库与表,踏入大数据殿堂
本文详细介绍了在 MySQL 中创建数据库和表的方法。包括安装 MySQL、用命令行和图形化工具创建数据库、选择数据库、创建表(含数据类型介绍与选择建议、案例分析、最佳实践与注意事项)以及查看数据库和表的内容。文章专业、严谨且具可操作性,对数据管理有实际帮助。
大数据新视界 --面向数据分析师的大数据大厂之 MySQL 基础秘籍:轻松创建数据库与表,踏入大数据殿堂
|
1天前
|
负载均衡 算法 关系型数据库
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
本文聚焦 MySQL 集群架构中的负载均衡算法,阐述其重要性。详细介绍轮询、加权轮询、最少连接、加权最少连接、随机、源地址哈希等常用算法,分析各自优缺点及适用场景。并提供 Java 语言代码实现示例,助力直观理解。文章结构清晰,语言通俗易懂,对理解和应用负载均衡算法具有实用价值和参考价值。
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
|
14天前
|
关系型数据库 MySQL 数据安全/隐私保护
大数据新视界--大数据大厂之MySQL 数据库课程设计:数据安全深度剖析与未来展望
本文深入探讨数据库课程设计 MySQL 的数据安全。以医疗、电商、企业案例,详述用户管理、数据加密、备份恢复及网络安全等措施,结合数据安全技术发展趋势,与《大数据新视界 -- 大数据大厂之 MySQL 数据库课程设计》紧密关联,为 MySQL 数据安全提供全面指南。
大数据新视界--大数据大厂之MySQL 数据库课程设计:数据安全深度剖析与未来展望
|
9天前
|
负载均衡 算法 关系型数据库
大数据新视界--大数据大厂之MySQL数据库课程设计:MySQL集群架构负载均衡故障排除与解决方案
本文深入探讨 MySQL 集群架构负载均衡的常见故障及排除方法。涵盖请求分配不均、节点无法响应、负载均衡器故障等现象,介绍多种负载均衡算法及故障排除步骤,包括检查负载均衡器状态、调整算法、诊断修复节点故障等。还阐述了预防措施与确保系统稳定性的方法,如定期监控维护、备份恢复策略、团队协作与知识管理等。为确保 MySQL 数据库系统高可用性提供全面指导。
|
14天前
|
SQL 关系型数据库 MySQL
大数据新视界--大数据大厂之MySQL数据库课程设计:MySQL 数据库 SQL 语句调优方法详解(2-1)
本文深入介绍 MySQL 数据库 SQL 语句调优方法。涵盖分析查询执行计划,如使用 EXPLAIN 命令及理解关键指标;优化查询语句结构,包括避免子查询、减少函数使用、合理用索引列及避免 “OR”。还介绍了索引类型知识,如 B 树索引、哈希索引等。结合与 MySQL 数据库课程设计相关文章,强调 SQL 语句调优重要性。为提升数据库性能提供实用方法,适合数据库管理员和开发人员。
|
15天前
|
SQL 存储 分布式数据库
分布式存储数据恢复—hbase和hive数据库数据恢复案例
分布式存储数据恢复环境: 16台某品牌R730xd服务器节点,每台服务器节点上有数台虚拟机。 虚拟机上部署Hbase和Hive数据库。 分布式存储故障: 数据库底层文件被误删除,数据库不能使用。要求恢复hbase和hive数据库。
61 12
|
16天前
|
存储 数据采集 分布式计算
别光堆数据,架构才是大数据的灵魂!
别光堆数据,架构才是大数据的灵魂!
46 13
|
13天前
|
关系型数据库 MySQL 大数据
大数据新视界--大数据大厂之MySQL 数据库课程设计:MySQL 数据库 SQL 语句调优的进阶策略与实际案例(2-2)
本文延续前篇,深入探讨 MySQL 数据库 SQL 语句调优进阶策略。包括优化索引使用,介绍多种索引类型及避免索引失效等;调整数据库参数,如缓冲池、连接数和日志参数;还有分区表、垂直拆分等其他优化方法。通过实际案例分析展示调优效果。回顾与数据库课程设计相关文章,强调全面认识 MySQL 数据库重要性。为读者提供综合调优指导,确保数据库高效运行。

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等