AMD重拳出击人工智能

简介:

12月13日,AMD宣布计划推出一系列人工智能产品,包括3款图形加速卡,4款OEM机箱和一系列开源软件。在这个新兴市场中,Nvidia已经发展了一段时间,英特尔和几个初创公司也都在开发替代产品。

AMD将在面向机器学习的GPU领域“引发以前从来没有过的竞争”,TiriasResearch高级分析师KevinKrewell这样表示。

“关键是没有那么多卡,但是有很多软件,”Krewell表示。“Nvidia提供Cuda软件来帮助人们立即开始进行编码。AMD支持OpenCL,但是现在他们有更有吸引力的解决方案。”

AMD公布了3款在RadeonInstinct新品牌下的图形卡,支持16位打包浮点运算操作,其中2款卡预计将在明年年初出货,采用现有的GPU,针对推断类的任务。

150WMI6采用PolarisGPU和16Bytes内存,通过224Gbit/s链路提供最高5.7TFlops的FP16峰值性能。175WMI8加速卡在2.5-D堆栈上采用FijiNanoGPU,有4GBHigh-BandwidthMemory运行在512Gbit/s链路上,性能最高可达到8.2TFlops。高端300WMI25卡针对培训任务,采用AMD的下一代VegaGPU,将在7月前出货。

这些卡将运行在4月新推出的MIOpen开源GPU加速库,支持像卷积、池化、激活功能、归一化和张量格式。

新的加速库是基于AMD现有的RandeonOpenCompute软件,其中包括域专有的编辑器,针对线性代数和张量以及语言运行时间。该软件支持7种机器学习框架,包括Caffe、Torch7以及Tensorflow,还有4种编程语言——Python、OIpenCL、高性能版C以及针对Nvidia的编译层。

超微宣布推出了支持AMD这三款新卡的机架式系统。Inventec也宣布两款系统支持一个机架节点最多有4个或者16个带有PCIe插槽、FPGA或者固态盘的M125Vega卡。Inventec还展示了一款将会包含120个Vega卡、GPU计算性能最高达到3Petaflops的机架系统。

在机器学习方面,AMD正在迎头赶上。4月,Nvidia开始出货针对高端GPU四路集群的设计,采用Nvidia独有的NV-Link技术,支持更高吞吐量、更低延迟的PCIe。并且Nvidia针对GPU计算的Cuda多年来已经被广泛采用。

上个月,英特尔详细阐述了采用至强和至强Phi处理器的计划,以及收购通过收购Nervana和Movidius以覆盖广泛的推断和培训类任务。此外像Cornami、Graphcore以及WaveComputing的初创公司已经公布了新芯片计划,据他们称,它在培训类任务方面的表现将击败GPU。

在过去两年中,机器学习已经成为Amazon、百度和Facebook等数据中心巨头的一种战略性工作负载。5月,Google宣布设计出了他们自己的AI推理加速器。

AMD计划公布一项基于采用更开放的组件的独特计划。除了新的开源加速库之外,AMD还将开放GPU指令集,针对那些希望做低等级优化的工程师们。

此外,AMD还计划支持像CCIX、GenZ连接到FPGA加速器以及存储存储这样的开放互连。与此同时,AMD也支持PCIe和单根虚拟化标准。

今年年底,AMD计划推出名为Naples的新服务器处理器,采用Zenx86核心。AMD表示,将把最低延迟的链路带入x86主机,能够在单一服务器节点中打包4-16个GPU。AMD目前已经支持GPU之间的直接内存访问(DMA),以及机架间的远程DMA。

AMD表示,与使用通用矩阵乘法(GEMM)的卷积相比,MIOpen代码将加速AI任务近3倍之多。此外AMD还分别展示了在NvidiaTitanX-Maxwell以及Pascal的DeepBenchDEMM之上MI8和MI25卡显著提升的性能。

AMD正在快速向前发展。它展示了两周时间内Vega采用Cuda和Caffe处理MIOpen软件中的培训任务。Vega芯片仍然供不应求,因为开发者正在致力于将传统图形软件和游戏放到Vega芯片上。

AMDRadeon部门首席架构师RajaKoduri表示,AMD的MxGPU虚拟化将提供给机器学习和游戏。

“我们的竞争对手是把游戏和人工智能分成两个部分,而我们希望把两者结合到一起,”他说。

此前,AMD公布了与数据中心巨头阿里巴巴以及Google在GPU方面的合作。

多伦多大学的研究人员称赞了MIOpen软件,他使用该软件做4位数据和汇编语言支持天文学应用程序。“我们发现人们还在谈论1位和2位数学,这说明我们在机器学习方面还处于很早起的阶段,”Xilinx副总裁LiamMadden这样表示。



本文出处:畅享网
本文来自云栖社区合作伙伴畅享网,了解相关信息可以关注vsharing.com网站。

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
目录
打赏
0
0
0
0
26198
分享
相关文章
《C++与AMD ROCm:人工智能计算的强力引擎》
AMD ROCm平台是一个开放的、基于GPU的高性能计算平台,为人工智能计算提供卓越加速能力。结合C++这一高效编程语言,ROCm平台在深度学习、计算机视觉和自然语言处理等领域展现出巨大潜力。C++对底层硬件的精细控制与庞大的生态系统,使其在ROCm平台上实现更低延迟和更高吞吐量,适用于实时性要求高的任务。尽管面临编程复杂性和兼容性挑战,通过持续优化和技术支持,ROCm与C++的组合将在更多领域推动人工智能技术的实际应用,助力构建智能世界。
83 18
【人工智能】python之人工智能应用篇--数字人生成技术
数字人生成技术是基于人工智能技术和计算机图形学技术创建的虚拟人物形象的技术。该技术能够模拟人类的外貌、声音、动作和交流能力,为多个领域带来创新的应用可能性。数字人的本质是将所有信息(数字和文字)通过数字处理(如计算机视觉、语音识别等)再进行表达的过程,形成具有人类形态和行为的数字产物。 数字人的生成涉及到多种技术,如3D重建技术,使用三维扫描仪扫描人的外观、五官等,并通过3D模型重建三维人;虚拟直播技术,使用计算机技术生成人物或实体,并且可以实时直播、录制;数字人体数据集技术,利用数据构建数字人模型以及训练虚拟现实引擎等
168 4
探索人工智能:从基础到未来
在这篇文章中,我们将一起踏上一段奇妙的旅程,探索人工智能(AI)的奥秘。我们会从AI的基本概念和历史出发,逐步深入到它的工作原理、应用实例,以及它如何改变我们的生活和工作方式。无论你是科技爱好者,还是对未来充满好奇的朋友,这篇文章都将为你打开一扇了解AI的大门,让你领略到这项技术的魅力和潜力。让我们一起启程,探索人工智能的精彩世界吧!
人工智能(AI)技术的发展史
人工智能 (AI) 的发展历程从20世纪50年代起步,历经初始探索、早期发展、专家系统兴起、机器学习崛起直至深度学习革命。1950年图灵测试提出,1956年达特茅斯会议标志着AI研究开端。60-70年代AI虽取得初步成果但仍遭遇困境。80年代专家系统如MYCIN展现AI应用潜力。90年代机器学习突飞猛进,1997年深蓝战胜国际象棋冠军。21世纪以来,深度学习技术革新了AI,在图像、语音识别等领域取得重大成就。尽管AI已广泛应用,但仍面临数据隐私、伦理等挑战。未来AI将加强人机协作、增强学习与情感智能,并在医疗、教育等领域发挥更大作用。
人工智能驱动的未来:从深度学习到通用人工智能
在21世纪,人工智能(AI)技术经历了迅猛的发展,并在各行各业中得到了广泛应用。这篇文章将探讨AI技术的发展历程,从深度学习的突破开始,到当前通用人工智能的研究进展,并展望其未来潜力。
86 0
2023年A系列人工智能领域文章计划和简介
人工智能是一种快速发展的领域,它涉及多个学科,包括数学、计算机科学、统计学等等。初学者应该掌握一些基本的理论知识,以及编程语言Python的基础知识。在理论方面,初学者应该掌握基础数学知识,如线性代数、微积分和概率论等,这些理论知识是人工智能的基础。此外,初学者应该了解一些机器学习和深度学习的基础知识,如分类、聚类、回归、神经网络等等。在编程方面,初学者应该掌握Python编程语言的基础知识,包括变量、数据类型、循环、条件语句等等。此外,初学者还应该学习一些常用的Python库和框架,如NumPy、Pandas、Matplotlib、Scikit-learn等等。
176 0
2023年A系列人工智能领域文章计划和简介
英特尔,让人工智能成就未来
5月27日, 2017全球机器智能峰会在北京正式举行。作为一场聚焦人工智能的顶级行业盛宴,GMIS 2017汇集了众多行业大咖,兼顾学界与业界,以专业化、全球化的视角为人工智能从业者和爱好者献上一场机器智能的盛会。
129 0
英特尔,让人工智能成就未来