Python分布式抓取和分析京东商城评价

简介: 互联网购物现在已经是非常普遍的购物方式,在互联网上购买商品并且使用之后,很多人都会回过头来对自己购买的商品进行一些评价,以此来表达自己对于该商品使用后的看法。商品评价的好坏对于一个商品的重要性显而易见,大部分消费者都以此作为快速评判该商品质量优劣的方式。

互联网购物现在已经是非常普遍的购物方式,在互联网上购买商品并且使用之后,很多人都会回过头来对自己购买的商品进行一些评价,以此来表达自己对于该商品使用后的看法。商品评价的好坏对于一个商品的重要性显而易见,大部分消费者都以此作为快速评判该商品质量优劣的方式。所以,与此同时,有些商家为了获得好评,还会做一些 "好评优惠" 或者 "返点" 活动来刺激消费者评价商品。

既然商品评价对于消费者选购商品而言至关重要,那么我想试试可以从这些评价信息中获取到怎样的价值,来帮助消费者快速获取到关于该商品的一些重要信息,给他们的购物带来更加可靠地保证?

所以,我认为,一种快速、全面、高提炼度和高对比度的信息获取和展示方式将会非常必要。 于是,我采用分布式快速抓取京东的评价信息,然后使用 pandas 对抓取到的数据进行分析。

话不多说先附上使用地址
体验地址:http://awolfly9.com/jd/

想要分析京东商城的商品评价信息,那么需要做些什么呢

采用分布式抓取,尽量在短时间内抓取需要分析的商品足够多的评价信息 
将抓取到的评价信息都存储到数据库
从数据库中取出所有数据进行数据分析
    • 生成好评的词云,并且获取关键字

    • 生成中评的词云,并且获取关键字

    • 生成差评的词云,并且获取关键字

    • 分析购买该商品不同颜色的比例,生成柱状图

    • 分析购买该商品不同配置的比例,生成柱状图

    • 分析该商品的销售数量和评论数量和时间的关系,生成时间则线图

    • 分析该商品不同省份购买的的比例,生成柱状图

    • 分析该商品不同渠道的销售比例,生成柱状图

利用 Django 搭建后台,将数据抓取和数据分析连起来
前端显示数据抓取和分析结果

分布式抓取京东商城的评价信息

采用分布式抓取的目的是快速的在短时间内尽量抓取足够多的商品评价,使分析结果更精确

iPhone7 https://item.jd.com/3995645.html 为例,通过 Chrome 抓包分析出京东商城的评价请求 URl https://club.jd.com/comment/productPageComments.action?callback=fetchJSON_comment98vv2940&productId=3995645&score=0&sortType=5&page=1&pageSize=10&isShadowSku=0
找出评价请求 URL 规律,获取到如下 URL 组合链接
利用 Chrome 插件 Postman 测试链接是否可用,发现京东获取评价信息并没有验证 Cookie 之类的反爬措施
开始编码利用 scrapy 抓取京东商城的商品评价信息并存入数据库以备使用

数据分析

从数据库中取出相应数据,开始分析
使用 python 的扩展库 wordcloud 分别提取好评、中评、差评的关键字,并且生成相应的词云图片
分析该商品不同颜色的销量占比,并且生成柱状图,例如 iphone7 的不同颜色金色、玫瑰金色、银色、黑色、亮黑色、还有最新出的红色的占比
分析该商品不同配置的销量占比,并且生成柱状图,例如 iphone7 32G 、 64G、128G 存储
分析该商品销售和评论时间并且生成折线图,分析出商品在什么时间最畅销
分析用户购买该商品的渠道,例如用户通过京东 Android 客户端、微信京东购物、京东 iPhone 客户端购物的比例,并且生成柱状图
分析购买该商品的用户的地域省份。例如北京、上海、广州那个城市在京东上购买 iPhone7 的人更多
将以上分析结果都存储保留

Django 后台 WEB

使用 Django 搭建一个简易的后台 jd_analysis,将分布式抓取数据和数据分析连起来,并且将分析结果返回前端显示。

jd_analysis 提供一个接口接受用户请求分析的京东商城商品的 URL 链接
jd_analysis 接受到商品链接后开启爬虫进程开始抓取需要分析的商品的名称和评价数量
组合出完整的评价链接插入到 redis 中,实现分布式爬虫抓取,尽可能在短时间内抓取足够多的该商品评价信息(我现在是 30s 时间大概可以抓取 3000 条评价信息)
主服务器等待一定的抓取时间,例如主服务器等待 30s,30s 后一定要给前端返回分析结果,所以等 30s 后清空 redis 中该商品的链接,从服务器没有读取不到需要抓取的链接也就自动关闭
开启分析进程,开始分析抓取到的所有数据,并且生成图标等信息

前端展示

在客户端第一次请求时,生成一个 GUID,并且存储在 cookie 中。然后开启一个定时器,带上 GUID 不断的向 jd_analysis 后台请求结果。jd_analysis 后台利用请求的 GUID 从 redis 中获取抓取信息和分析结果的所有内容,返回给前端。前端显示请求到的结果。

最后附上两张效果图

购买和评论时间折线图

购买渠道柱状图

大功告成

以上就是完整的抓取京东商品的评价信息并且使用 pandas 分析评价然后利用 Django 搭建后台前端显示抓取和分析结果的所有步骤。


原文发布时间为:2017-04-19

本文作者:awolfly9

本文来自云栖社区合作伙伴“Python中文社区”,了解相关信息可以关注“Python中文社区”微信公众号

目录
打赏
0
0
0
0
14291
分享
相关文章
基于Python+Vue开发的商城管理系统源码+运行步骤
基于Python+Vue开发的商城管理系统(前后端分离),这是一项为大学生课程设计作业而开发的项目。该系统旨在帮助大学生学习并掌握Python编程技能,同时锻炼他们的项目设计与开发能力。通过学习基于Python的网上商城管理系统项目,大学生可以在实践中学习和提升自己的能力,为以后的职业发展打下坚实基础。
57 7
从混沌到秩序:Python的依赖管理工具分析
Python 的依赖管理工具一直没有标准化,主要原因包括历史发展的随意性、社区的分散性、多样化的使用场景、向后兼容性的挑战、缺乏统一治理以及生态系统的快速变化。依赖管理工具用于处理项目中的依赖关系,确保不同环境下的依赖项一致性,避免软件故障和兼容性问题。常用的 Python 依赖管理工具如 pip、venv、pip-tools、Pipenv、Poetry 等各有优缺点,选择时需根据项目需求权衡。新工具如 uv 和 Pixi 在性能和功能上有所改进,值得考虑。
120 35
Python 原生爬虫教程:京东商品列表页面数据API
京东商品列表API是电商大数据分析的重要工具,支持开发者、商家和研究人员获取京东平台商品数据。通过关键词搜索、分类筛选、价格区间等条件,可返回多维度商品信息(如名称、价格、销量等),适用于市场调研与推荐系统开发。本文介绍其功能并提供Python请求示例。接口采用HTTP GET/POST方式,支持分页、排序等功能,满足多样化数据需求。
如何避免Python爬虫重复抓取相同页面?
如何避免Python爬虫重复抓取相同页面?
基于Python+Vue开发的家具商城管理系统源码+运行步骤
基于Python+Vue开发的家具商城管理系统(前后端分离),这是一项为大学生课程设计作业而开发的项目。该系统旨在帮助大学生学习并掌握Python编程技能,同时锻炼他们的项目设计与开发能力。通过学习基于Python的家具商城管理系统项目,大学生可以在实践中学习和提升自己的能力,为以后的职业发展打下坚实基础。
43 8
基于Python+Vue开发的体育用品商城管理系统源码+运行步骤+课程设计
一项为大学生课程设计作业而开发的项目。该系统旨在帮助大学生学习并掌握Python编程技能,同时锻炼他们的项目设计与开发能力。通过学习基于Python的体育用品销售商城管理系统项目,大学生可以在实践中学习和提升自己的能力,为以后的职业发展打下坚实基础。
39 4
Python 原生爬虫教程:京东商品详情页面数据API
本文介绍京东商品详情API在电商领域的应用价值及功能。该API通过商品ID获取详细信息,如基本信息、价格、库存、描述和用户评价等,支持HTTP请求(GET/POST),返回JSON或XML格式数据。对于商家优化策略、开发者构建应用(如比价网站)以及消费者快速了解商品均有重要意义。研究此API有助于推动电商业务创新与发展。
Python GIL(全局解释器锁)机制对多线程性能影响的深度分析
在Python开发中,GIL(全局解释器锁)一直备受关注。本文基于CPython解释器,探讨GIL的技术本质及其对程序性能的影响。GIL确保同一时刻只有一个线程执行代码,以保护内存管理的安全性,但也限制了多线程并行计算的效率。文章分析了GIL的必要性、局限性,并介绍了多进程、异步编程等替代方案。尽管Python 3.13计划移除GIL,但该特性至少要到2028年才会默认禁用,因此理解GIL仍至关重要。
266 16
Python GIL(全局解释器锁)机制对多线程性能影响的深度分析
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等