Apache Flink vs Apache Spark——感觉二者是互相抄袭啊 看谁的好就抄过来 Flink支持在runtime中的有环数据流,这样表示机器学习算法更有效而且更有效率

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介:

Apache Flink是什么

  Flink是一款新的大数据处理引擎,目标是统一不同来源的数据处理。这个目标看起来和Spark和类似。没错,Flink也在尝试解决 Spark在解决的问题。这两套系统都在尝试建立一个统一的平台可以运行批量,流式,交互式,图处理,机器学习等应用。所以,Flink和Spark的目 标差别并不大,他们最主要的区别在于实现的细节,后面我会重点从不同的角度对比这两者。

Apache Spark vs Apache Flink

1、抽象 Abstraction

  Spark中,对于批处理我们有RDD,对于流式,我们有DStream,不过内部实际还是RDD.所以所有的数据表示本质上还是RDD抽象。 后面我会重点从不同的角度对比这两者。在Flink中,对于批处理有DataSet,对于流式我们有DataStreams。看起来和Spark类似,他 们的不同点在于:

  (一)DataSet在运行时是表现为运行计划(runtime plans)的

  在Spark中,RDD在运行时是表现为java objects的。通过引入Tungsten,这块有了些许的改变。但是在Flink中是被表现为logical plan(逻辑计划)的,听起来很熟悉?没错,就是类似于Spark中的dataframes。所以在Flink中你使用的类Dataframe api是被作为第一优先级来优化的。但是相对来说在Spark RDD中就没有了这块的优化了。
Flink中的Dataset,对标Spark中的Dataframe,在运行前会经过优化。在Spark 1.6,dataset API已经被引入Spark了,也许最终会取代RDD 抽象。

  (二)Dataset和DataStream是独立的API

  在Spark中,所有不同的API,例如DStream,Dataframe都是基于RDD抽象的。但是在Flink中,Dataset和 DataStream是同一个公用的引擎之上两个独立的抽象。所以你不能把这两者的行为合并在一起操作,当然,Flink社区目前在朝这个方向努力(https://issues.apache.org/jira/browse/Flink-2320),但是目前还不能轻易断言最后的结果。

2、内存管理

  一直到1.5版本,Spark都是试用java的内存管理来做数据缓存,明显很容易导致OOM或者gc。所以从1.5开始,Spark开始转向精确的控制内存的使用,这就是tungsten项目了。

  而Flink从第一天开始就坚持自己控制内存试用。这个也是启发了Spark走这条路的原因之一。Flink除了把数据存在自己管理的内存以 外,还直接操作二进制数据。在Spark中,从1.5开始,所有的dataframe操作都是直接作用在tungsten的二进制数据上。

3、语言实现

  Spark是用scala来实现的,它提供了Java,Python和R的编程接口。Flink是java实现的,当然同样提供了Scala API
所以从语言的角度来看,Spark要更丰富一些。因为我已经转移到scala很久了,所以不太清楚这两者的java api实现情况。

4、API

  Spark和Flink都在模仿scala的collection API.所以从表面看起来,两者都很类似。下面是分别用RDD和DataSet API实现的word count

  不知道是偶然还是故意的,API都长得很像,这样很方便开发者从一个引擎切换到另外一个引擎。我感觉以后这种Collection API会成为写data pipeline的标配。

5、Steaming

  Spark把streaming看成是更快的批处理,而Flink把批处理看成streaming的special case。这里面的思路决定了各自的方向,其中两者的差异点有如下这些:

实时 vs 近实时的角度

  Flink提供了基于每个事件的流式处理机制,所以可以被认为是一个真正的流式计算。它非常像storm的model。
而Spark,不是基于事件的粒度,而是用小批量来模拟流式,也就是多个事件的集合。所以Spark被认为是近实时的处理系统。

  Spark streaming 是更快的批处理,而Flink Batch是有限数据的流式计算。
虽然大部分应用对准实时是可以接受的,但是也还是有很多应用需要event level的流式计算。这些应用更愿意选择storm而非Spark streaming,现在,Flink也许是一个更好的选择。

6、SQL interface

  目前Spark-sql是Spark里面最活跃的组件之一,Spark提供了类似Hive的sql和Dataframe这种DSL来查询结构化 数据,API很成熟,在流式计算中使用很广,预计在流式计算中也会发展得很快。至于Flink,到目前为止,Flink Table API只支持类似DataFrame这种DSL,并且还是处于beta状态,社区有计划增加SQL 的interface,但是目前还不确定什么时候才能在框架中用上。所以这个部分,Spark胜出。

7、外部数据源的整合

  Spark的数据源 API是整个框架中最好的,支持的数据源包括NoSql db,parquet,ORC等,并且支持一些高级的操作,例如predicate push down。Flink目前还依赖map/reduce InputFormat来做数据源聚合。这一场Spark胜

8、Iterative processing

  Spark对机器学习的支持较好,因为可以在Spark中利用内存cache来加速机器学习算法。但是大部分机器学习算法其实是一个有环的数据流,但是在Spark中,实际是用无环图来表示的,一般的分布式处理引擎都是不鼓励试用有环图的。但是 Flink这里又有点不一样,Flink支持在runtime中的有环数据流,这样表示机器学习算法更有效而且更有效率。这一点Flink胜出。

9、Stream as platform vs Batch as Platform

  Spark诞生在Map/Reduce的时代,数据都是以文件的形式保存在磁盘中,这样非常方便做容错处理。Flink把纯流式数据计算引入大 数据时代,无疑给业界带来了一股清新的空气。这个idea非常类似akka-streams这种。成熟度目前的确有一部分吃螃蟹的用户已经在生产环境中使 用Flink了,不过从我的眼光来看,Flink还在发展中,还需要时间来成熟。

结论

  目前Spark相比Flink是一个更为成熟的计算框架,但是Flink的很多思路很不错,Spark社区也意识到了这一点,并且逐渐在采用Flink中的好的设计思路,所以学习一下Flink能让你了解一下Streaming这方面的更迷人的思路。

转自:https://www.zhihu.com/question/30151872/answer/82554774















本文转自张昺华-sky博客园博客,原文链接:http://www.cnblogs.com/bonelee/p/6433485.html ,如需转载请自行联系原作者

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
2天前
|
机器学习/深度学习 自然语言处理 算法
机器学习算法原理与应用:深入探索与实战
【5月更文挑战第2天】本文深入探讨机器学习算法原理,包括监督学习(如线性回归、SVM、神经网络)、非监督学习(聚类、PCA)和强化学习。通过案例展示了机器学习在图像识别(CNN)、自然语言处理(RNN/LSTM)和推荐系统(协同过滤)的应用。随着技术发展,机器学习正广泛影响各领域,但也带来隐私和算法偏见问题,需关注解决。
|
4天前
|
机器学习/深度学习 运维 算法
【Python机器学习专栏】异常检测算法在Python中的实践
【4月更文挑战第30天】本文介绍了异常检测的重要性和在不同领域的应用,如欺诈检测和网络安全。文章概述了四种常见异常检测算法:基于统计、距离、密度和模型的方法。在Python实践中,使用scikit-learn库展示了如何实现这些算法,包括正态分布拟合、K-means聚类、局部异常因子(LOF)和孤立森林(Isolation Forest)。通过计算概率密度、距离、LOF值和数据点的平均路径长度来识别异常值。
|
4天前
|
机器学习/深度学习 数据可视化 算法
【Python机器学习专栏】t-SNE算法在数据可视化中的应用
【4月更文挑战第30天】t-SNE算法是用于高维数据可视化的非线性降维技术,通过最小化Kullback-Leibler散度在低维空间保持数据点间关系。其特点包括:高维到二维/三维映射、保留局部结构、无需预定义簇数量,但计算成本高。Python中可使用`scikit-learn`的`TSNE`类实现,结合`matplotlib`进行可视化。尽管计算昂贵,t-SNE在揭示复杂数据集结构上极具价值。
|
4天前
|
机器学习/深度学习 算法 数据挖掘
【Python机器学习专栏】关联规则学习:Apriori算法详解
【4月更文挑战第30天】Apriori算法是一种用于关联规则学习的经典算法,尤其适用于购物篮分析,以发现商品间的购买关联。该算法基于支持度和置信度指标,通过迭代生成频繁项集并提取满足阈值的规则。Python中可借助mlxtend库实现Apriori,例如处理购物篮数据,设置支持度和置信度阈值,找出相关规则。
|
4天前
|
机器学习/深度学习 算法 数据挖掘
【Python机器学习专栏】层次聚类算法的原理与应用
【4月更文挑战第30天】层次聚类是数据挖掘中的聚类技术,无需预设簇数量,能生成数据的层次结构。分为凝聚(自下而上)和分裂(自上而下)两类,常用凝聚层次聚类有最短/最长距离、群集平均和Ward方法。优点是自动确定簇数、提供层次结构,适合小到中型数据集;缺点是计算成本高、过程不可逆且对异常值敏感。在Python中可使用`scipy.cluster.hierarchy`进行实现。尽管有局限,层次聚类仍是各领域强大的分析工具。
|
4天前
|
机器学习/深度学习 算法 数据挖掘
【Python 机器学习专栏】K-means 聚类算法在 Python 中的实现
【4月更文挑战第30天】K-means 是一种常见的聚类算法,用于将数据集划分为 K 个簇。其基本流程包括初始化簇中心、分配数据点、更新簇中心并重复此过程直到收敛。在 Python 中实现 K-means 包括数据准备、定义距离函数、初始化、迭代和输出结果。虽然算法简单高效,但它需要预先设定 K 值,且对初始点选择敏感,可能陷入局部最优。广泛应用在市场分析、图像分割等场景。理解原理与实现对应用聚类分析至关重要。
|
4天前
|
机器学习/深度学习 算法 前端开发
【Python机器学习专栏】集成学习算法的原理与应用
【4月更文挑战第30天】集成学习通过组合多个基学习器提升预测准确性,广泛应用于分类、回归等问题。主要步骤包括生成基学习器、训练和结合预测结果。算法类型有Bagging(如随机森林)、Boosting(如AdaBoost)和Stacking。Python中可使用scikit-learn实现,如示例代码展示的随机森林分类。集成学习能降低模型方差,缓解过拟合,提高预测性能。
|
4天前
|
机器学习/深度学习 算法 Python
【Python 机器学习专栏】随机森林算法的性能与调优
【4月更文挑战第30天】随机森林是一种集成学习方法,通过构建多棵决策树并投票或平均预测结果,具有高准确性、抗过拟合、处理高维数据的能力。关键性能因素包括树的数量、深度、特征选择和样本大小。调优方法包括调整树的数量、深度,选择关键特征和参数优化。Python 示例展示了使用 GridSearchCV 进行调优。随机森林广泛应用于分类、回归和特征选择问题,是机器学习中的重要工具。
|
4天前
|
机器学习/深度学习 算法 数据可视化
【Python机器学习专栏】决策树算法的实现与解释
【4月更文挑战第30天】本文探讨了决策树算法,一种流行的监督学习方法,用于分类和回归。文章阐述了决策树的基本原理,其中内部节点代表特征判断,分支表示判断结果,叶节点代表类别。信息增益等标准用于衡量特征重要性。通过Python的scikit-learn库展示了构建鸢尾花数据集分类器的示例,包括训练、预测、评估和可视化决策树。最后,讨论了模型解释和特征重要性评估在优化中的作用。
|
5天前
|
机器学习/深度学习 自然语言处理 算法
机器学习--K-近邻算法常见的几种距离算法详解
机器学习--K-近邻算法常见的几种距离算法详解

推荐镜像

更多