三层BP神经网络的python实现

简介:

这是一个非常漂亮的三层反向传播神经网络的python实现,下一步我准备试着将其修改为多层BP神经网络。

 

下面是运行演示函数的截图,你会发现预测的结果很惊人!

 

 

 

 

提示:运行演示函数的时候,可以尝试改变隐藏层的节点数,看节点数增加了,预测的精度会否提升

 

复制代码
  1 import math
  2 import random
  3 import string
  4 
  5 random.seed(0)
  6 
  7 # 生成区间[a, b)内的随机数
  8 def rand(a, b):
  9     return (b-a)*random.random() + a
 10 
 11 # 生成大小 I*J 的矩阵,默认零矩阵 (当然,亦可用 NumPy 提速)
 12 def makeMatrix(I, J, fill=0.0):
 13     m = []
 14     for i in range(I):
 15         m.append([fill]*J)
 16     return m
 17 
 18 # 函数 sigmoid,这里采用 tanh,因为看起来要比标准的 1/(1+e^-x) 漂亮些
 19 def sigmoid(x):
 20     return math.tanh(x)
 21 
 22 # 函数 sigmoid 的派生函数, 为了得到输出 (即:y)
 23 def dsigmoid(y):
 24     return 1.0 - y**2
 25 
 26 class NN:
 27     ''' 三层反向传播神经网络 '''
 28     def __init__(self, ni, nh, no):
 29         # 输入层、隐藏层、输出层的节点(数)
 30         self.ni = ni + 1 # 增加一个偏差节点
 31         self.nh = nh
 32         self.no = no
 33 
 34         # 激活神经网络的所有节点(向量)
 35         self.ai = [1.0]*self.ni
 36         self.ah = [1.0]*self.nh
 37         self.ao = [1.0]*self.no
 38         
 39         # 建立权重(矩阵)
 40         self.wi = makeMatrix(self.ni, self.nh)
 41         self.wo = makeMatrix(self.nh, self.no)
 42         # 设为随机值
 43         for i in range(self.ni):
 44             for j in range(self.nh):
 45                 self.wi[i][j] = rand(-0.2, 0.2)
 46         for j in range(self.nh):
 47             for k in range(self.no):
 48                 self.wo[j][k] = rand(-2.0, 2.0)
 49 
 50         # 最后建立动量因子(矩阵)
 51         self.ci = makeMatrix(self.ni, self.nh)
 52         self.co = makeMatrix(self.nh, self.no)
 53 
 54     def update(self, inputs):
 55         if len(inputs) != self.ni-1:
 56             raise ValueError('与输入层节点数不符!')
 57 
 58         # 激活输入层
 59         for i in range(self.ni-1):
 60             #self.ai[i] = sigmoid(inputs[i])
 61             self.ai[i] = inputs[i]
 62 
 63         # 激活隐藏层
 64         for j in range(self.nh):
 65             sum = 0.0
 66             for i in range(self.ni):
 67                 sum = sum + self.ai[i] * self.wi[i][j]
 68             self.ah[j] = sigmoid(sum)
 69 
 70         # 激活输出层
 71         for k in range(self.no):
 72             sum = 0.0
 73             for j in range(self.nh):
 74                 sum = sum + self.ah[j] * self.wo[j][k]
 75             self.ao[k] = sigmoid(sum)
 76 
 77         return self.ao[:]
 78 
 79     def backPropagate(self, targets, N, M):
 80         ''' 反向传播 '''
 81         if len(targets) != self.no:
 82             raise ValueError('与输出层节点数不符!')
 83 
 84         # 计算输出层的误差
 85         output_deltas = [0.0] * self.no
 86         for k in range(self.no):
 87             error = targets[k]-self.ao[k]
 88             output_deltas[k] = dsigmoid(self.ao[k]) * error
 89 
 90         # 计算隐藏层的误差
 91         hidden_deltas = [0.0] * self.nh
 92         for j in range(self.nh):
 93             error = 0.0
 94             for k in range(self.no):
 95                 error = error + output_deltas[k]*self.wo[j][k]
 96             hidden_deltas[j] = dsigmoid(self.ah[j]) * error
 97 
 98         # 更新输出层权重
 99         for j in range(self.nh):
100             for k in range(self.no):
101                 change = output_deltas[k]*self.ah[j]
102                 self.wo[j][k] = self.wo[j][k] + N*change + M*self.co[j][k]
103                 self.co[j][k] = change
104                 #print(N*change, M*self.co[j][k])
105 
106         # 更新输入层权重
107         for i in range(self.ni):
108             for j in range(self.nh):
109                 change = hidden_deltas[j]*self.ai[i]
110                 self.wi[i][j] = self.wi[i][j] + N*change + M*self.ci[i][j]
111                 self.ci[i][j] = change
112 
113         # 计算误差
114         error = 0.0
115         for k in range(len(targets)):
116             error = error + 0.5*(targets[k]-self.ao[k])**2
117         return error
118 
119     def test(self, patterns):
120         for p in patterns:
121             print(p[0], '->', self.update(p[0]))
122 
123     def weights(self):
124         print('输入层权重:')
125         for i in range(self.ni):
126             print(self.wi[i])
127         print()
128         print('输出层权重:')
129         for j in range(self.nh):
130             print(self.wo[j])
131 
132     def train(self, patterns, iterations=1000, N=0.5, M=0.1):
133         # N: 学习速率(learning rate)
134         # M: 动量因子(momentum factor)
135         for i in range(iterations):
136             error = 0.0
137             for p in patterns:
138                 inputs = p[0]
139                 targets = p[1]
140                 self.update(inputs)
141                 error = error + self.backPropagate(targets, N, M)
142             if i % 100 == 0:
143                 print('误差 %-.5f' % error)
144 
145 
146 def demo():
147     # 一个演示:教神经网络学习逻辑异或(XOR)------------可以换成你自己的数据试试
148     pat = [
149         [[0,0], [0]],
150         [[0,1], [1]],
151         [[1,0], [1]],
152         [[1,1], [0]]
153     ]
154 
155     # 创建一个神经网络:输入层有两个节点、隐藏层有两个节点、输出层有一个节点
156     n = NN(2, 2, 1)
157     # 用一些模式训练它
158     n.train(pat)
159     # 测试训练的成果(不要吃惊哦)
160     n.test(pat)
161     # 看看训练好的权重(当然可以考虑把训练好的权重持久化)
162     #n.weights()
163     
164     
165 if __name__ == '__main__':
166     demo()
复制代码

 

本文转自罗兵博客园博客,原文链接:http://www.cnblogs.com/hhh5460/p/4304628.html ,如需转载请自行联系原作者
目录
打赏
0
0
0
0
66
分享
相关文章
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
309 5
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
19天前
|
基于 Python 哈希表算法的局域网网络监控工具:实现高效数据管理的核心技术
在当下数字化办公的环境中,局域网网络监控工具已成为保障企业网络安全、确保其高效运行的核心手段。此类工具通过对网络数据的收集、分析与管理,赋予企业实时洞察网络活动的能力。而在其运行机制背后,数据结构与算法发挥着关键作用。本文聚焦于 PHP 语言中的哈希表算法,深入探究其在局域网网络监控工具中的应用方式及所具备的优势。
54 7
利用Python获取网络数据的技巧
抓起你的Python魔杖,我们一起进入了网络之海,捕捉那些悠游在网络中的数据鱼,想一想不同的网络资源,是不是都像数不尽的海洋生物,我们要做的,就是像一个优秀的渔民一样,找到他们,把它们捕获,然后用他们制作出种种美味。 **1. 打开魔法之门:请求包** 要抓鱼,首先需要一个鱼网。在Python的世界里,我们就是通过所谓的“请求包”来发送“抓鱼”的请求。requests是Python中常用的发送HTTP请求的库,用它可以方便地与网络上的资源进行交互。所谓的GET,POST,DELETE,还有PUT,这些听起来像偶像歌曲一样的单词,其实就是我们鱼网的不同方式。 简单用法如下: ``` im
57 14
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
害虫识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了12种常见的害虫种类数据集【"蚂蚁(ants)", "蜜蜂(bees)", "甲虫(beetle)", "毛虫(catterpillar)", "蚯蚓(earthworms)", "蜚蠊(earwig)", "蚱蜢(grasshopper)", "飞蛾(moth)", "鼻涕虫(slug)", "蜗牛(snail)", "黄蜂(wasp)", "象鼻虫(weevil)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Djan
147 1
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
Python 原生爬虫教程:网络爬虫的基本概念和认知
网络爬虫是一种自动抓取互联网信息的程序,广泛应用于搜索引擎、数据采集、新闻聚合和价格监控等领域。其工作流程包括 URL 调度、HTTP 请求、页面下载、解析、数据存储及新 URL 发现。Python 因其丰富的库(如 requests、BeautifulSoup、Scrapy)和简洁语法成为爬虫开发的首选语言。然而,在使用爬虫时需注意法律与道德问题,例如遵守 robots.txt 规则、控制请求频率以及合法使用数据,以确保爬虫技术健康有序发展。
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)", "毒鹅膏菌(Amanita)", "牛肝菌(Boletus)", "网状菌(Cortinarius)", "毒镰孢(Entoloma)", "湿孢菌(Hygrocybe)", "乳菇(Lactarius)", "红菇(Russula)", "松茸(Suillus)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,
183 11
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
公司电脑网络监控场景下 Python 广度优先搜索算法的深度剖析
在数字化办公时代,公司电脑网络监控至关重要。广度优先搜索(BFS)算法在构建网络拓扑、检测安全威胁和优化资源分配方面发挥重要作用。通过Python代码示例展示其应用流程,助力企业提升网络安全与效率。未来,更多创新算法将融入该领域,保障企业数字化发展。
68 10
Python 高级编程与实战:深入理解网络编程与异步IO
在前几篇文章中,我们探讨了 Python 的基础语法、面向对象编程、函数式编程、元编程、性能优化、调试技巧、数据科学、机器学习、Web 开发和 API 设计。本文将深入探讨 Python 在网络编程和异步IO中的应用,并通过实战项目帮助你掌握这些技术。
基于机器学习的人脸识别算法matlab仿真,对比GRNN,PNN,DNN以及BP四种网络
本项目展示了人脸识别算法的运行效果(无水印),基于MATLAB2022A开发。核心程序包含详细中文注释及操作视频。理论部分介绍了广义回归神经网络(GRNN)、概率神经网络(PNN)、深度神经网络(DNN)和反向传播(BP)神经网络在人脸识别中的应用,涵盖各算法的结构特点与性能比较。
利用Python脚本自动备份网络设备配置
通过本文的介绍,我们了解了如何利用Python脚本自动备份网络设备配置。该脚本使用 `paramiko`库通过SSH连接到设备,获取并保存配置文件。通过定时任务调度,可以实现定期自动备份,确保网络设备配置的安全和可用。希望这些内容能够帮助你在实际工作中实现网络设备的自动化备份。
121 14

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等