java 哈夫曼编码

简介:
//哈夫曼树类
public class HaffmanTree {
    //最大权值
    static final int MAXVALUE=1000;
    int nodeNum ; //叶子结点个数
    
    public HaffmanTree(int n)
    {
       this.nodeNum = n;
    }
    
    //构造哈夫曼树算法
    public void haffman(int[] weight,HaffNode[] nodes)//权值数组,所有节点数组
    {
        int n = this.nodeNum;
        //m1,m2,表示最小的两个权值,x1,x2,表示最小两个权值对应的编号,m1表示最小,m2表示次小
        int m1,m2,x1,x2; 
        
        //初始化所有的结点,对应有n个叶子结点的哈夫曼树,有2n-1个结点。
        for(int i=0;i < 2*n-1;i++)
        {
            HaffNode temp = new HaffNode();
            //初始化n个叶子结点,就是输入的节点。0、1、2、3是叶子节点也是输入的节点
            if(i < n)
            {
               temp.weight = weight[i];    
            }
            else
            {
               temp.weight = 0;    
            }
            temp.parent = 0;
            temp.flag = 0;
            temp.leftChild = -1;
            temp.rightChild = -1;
            nodes[i] = temp;
        }
        
        for(int i=0;i<n-1;i++){//初始化n-1个非叶子结点,n-1表示要循环n-1次求的n-1个数。
           m1 = m2 = MAXVALUE;
           x1 = x2 =0;
           for(int j=0;j< n+i;j++)//求得这n-1个数时,每次都是从0到n+i-1,并且flag=0的,flag=1表示已经加入到二叉树。
           {   //以下2步是找出权值最小的2个
               if(nodes[j].weight<m1 && nodes[j].flag==0)//if成立了else、else if就不进去了。
               {
                //m1,x1初始值为第一个元素,后面如果比m1要小,则m1指向更小的,原来m1指向的现在由m2指向,
                //如果后面比m1大比m2小,则m2指向这个比m1大比m2小的,
                //也就是说m1指向最小的,m2指向第2小的。
                  m2 = m1;
                  x2 = x1;
                  m1 = nodes[j].weight;
                  x1 = j;
               }
               else if(nodes[j].weight<m2 && nodes[j].flag ==0)
               {
                  m2 = nodes[j].weight;
                  x2 = j;
               }
           }
           //将权值最小的2个组合成一个2插树
           nodes[x1].parent = n+i;
           nodes[x2].parent = n+i;
           nodes[x1].flag = 1;
           nodes[x2].flag = 1;
           nodes[n+i].weight = nodes[x1].weight + nodes[x2].weight;
           nodes[n+i].leftChild = x1;
           nodes[n+i].rightChild = x2;
        }
        /*
        初始化数组之后:[1,3,5,7,4,9,16]
        编码:100、101、11、0
        */
    }
    
    //哈弗曼编码算法
    public void haffmanCode(HaffNode[] nodes,Code[] haffCode)
    {
        int n = this.nodeNum;
        Code code = new Code(n);//4
        int child,parent;
        
        for(int i=0;i<n; i++)//给前面n个输入的节点进行编码
        {
           code.start = n-1;//3
           code.weight = nodes[i].weight;//1
           child = i;//0
           parent = nodes[child].parent;
           //从叶子节点向上走来生成编码,画图即可。
           while(parent!=0)
           {
              if(nodes[parent].leftChild == child)
              {
                  code.bit[code.start] = 0;
              }
              else
              {
                  code.bit[code.start] = 1;
              }
              
              code.start--; 
              child = parent;
              parent = nodes[child].parent;
           }
           
           Code temp = new Code(n);
           for(int j=code.start+1;j < n;j++)
           {
               temp.bit[j] = code.bit[j];
           }
           temp.weight = code.weight;
           temp.start = code.start;
           haffCode[i] = temp;
        }
    }
}




//哈夫曼树的结点类
public class HaffNode {
   
    int weight; //权值
    int parent ;//他的双亲
    int flag ;//标志,是否为叶子节点
    int leftChild; //他的左孩子
    int rightChild;//他的右孩子
    
    HaffNode()
    {
        
    }
    
}



//哈夫曼编码类
public class Code {

    int[] bit;  //编码的数组
    int start;  //编码的开始下标
    int weight; //权值
    Code(int n){
        bit = new int[n];
        start = n-1;
    }
}




public class Test {

    public static void main(String[] args) {
        
        int n = 4;
        int[] weight = {1,3,5,7};
        HaffmanTree haffTree = new HaffmanTree(n);
        HaffNode[] nodes = new HaffNode[2*n-1];
        Code[] codes = new Code[n]; 
        //构造哈夫曼树
        haffTree.haffman(weight, nodes);
        //生成哈夫曼编码
        haffTree.haffmanCode(nodes, codes);
        
        //打印哈夫曼编码
        for(int i=0;i<n;i++)
        {
            System.out.print("Weight="+codes[i].weight+" Code=");
            for(int j=codes[i].start+1;j<n;j++)
            {
               System.out.print(codes[i].bit[j]);    
            }
            System.out.println();
        }
    }

}
复制代码

哈夫曼树:

带权路径长度是做小的,要使一棵二叉树的带权路径长度WPL值最小,必须使权值越大的叶结点越靠近根结点。哈夫曼提出的构造哈夫曼树构造算法为:
(1)由给定的n个权值{w1,w2,…,wn}构造n棵只有根 结点的二叉树,从而得到一个二叉树森林F={T1,T2,…,Tn}。
(2)在二叉树森林F中选取根结点的权值最小和次小的两棵二叉树作为新的二叉树的左右子树构造新的二叉树,新的二叉树的根结点权值为左右子树根结点权值之和。
(3)在二叉树森林F中删除作为新二叉树左右子树的两棵二叉树,将新二叉树加入到二叉树森林F中。
(4)重复步骤(2)和(3),当二叉树森林F中只剩下一棵二叉树时,这棵二叉树就是所构造的哈夫曼树。

 

哈夫曼编码问题:

哈夫曼树可用于构造代码总长度最短的编码方案。具体构造方法如下:
设需要编码的字符集合为{d1,d2,…,dn},各个字符在电文中出现的次数集合为{w1,w2,…,wn},以d1,d2,…,dn作为叶结点,以w1,w2,…,wn作为各叶结点的权值构造一棵二叉树,规定哈夫曼树中的左分支为0,右分支为1,则从根结点到每个叶结点所经过的分支对应的0和1组成的序列便为该结点对应字符的编码。这样的代码总长度最短的不等长编码称之为哈夫曼编码。

 

本文转自农夫山泉别墅博客园博客,原文链接:http://www.cnblogs.com/yaowen/p/4268157.html,如需转载请自行联系原作者

相关文章
|
7天前
|
存储 Java 数据库连接
java多线程之线程通信
java多线程之线程通信
|
7天前
|
安全 Java 开发者
深入理解Java并发编程:线程安全与性能优化
【4月更文挑战第9天】本文将深入探讨Java并发编程的核心概念,包括线程安全和性能优化。我们将详细解析Java中的同步机制,包括synchronized关键字、Lock接口以及并发集合等,并探讨它们如何影响程序的性能。此外,我们还将讨论Java内存模型,以及它如何影响并发程序的行为。最后,我们将提供一些实用的并发编程技巧和最佳实践,帮助开发者编写出既线程安全又高效的Java程序。
20 3
|
10天前
|
设计模式 安全 Java
Java并发编程实战:使用synchronized关键字实现线程安全
【4月更文挑战第6天】Java中的`synchronized`关键字用于处理多线程并发,确保共享资源的线程安全。它可以修饰方法或代码块,实现互斥访问。当用于方法时,锁定对象实例或类对象;用于代码块时,锁定指定对象。过度使用可能导致性能问题,应注意避免锁持有时间过长、死锁,并考虑使用`java.util.concurrent`包中的高级工具。正确理解和使用`synchronized`是编写线程安全程序的关键。
|
8天前
|
Java
Java 并发编程:深入理解线程池
【4月更文挑战第8天】本文将深入探讨 Java 中的线程池技术,包括其工作原理、优势以及如何使用。线程池是 Java 并发编程的重要工具,它可以有效地管理和控制线程的执行,提高系统性能。通过本文的学习,读者将对线程池有更深入的理解,并能在实际开发中灵活运用。
|
7天前
|
算法 Java 开发者
Java中的多线程编程:概念、实现与性能优化
【4月更文挑战第9天】在Java编程中,多线程是一种强大的工具,它允许开发者创建并发执行的程序,提高系统的响应性和吞吐量。本文将深入探讨Java多线程的核心概念,包括线程的生命周期、线程同步机制以及线程池的使用。接着,我们将展示如何通过继承Thread类和实现Runnable接口来创建线程,并讨论各自的优缺点。此外,文章还将介绍高级主题,如死锁的预防、避免和检测,以及如何使用并发集合和原子变量来提高多线程程序的性能和安全性。最后,我们将提供一些实用的性能优化技巧,帮助开发者编写出更高效、更稳定的多线程应用程序。
|
5天前
|
安全 算法 Java
深入理解Java并发编程:线程安全与性能优化
【4月更文挑战第11天】 在Java中,高效的并发编程是提升应用性能和响应能力的关键。本文将探讨Java并发的核心概念,包括线程安全、锁机制、线程池以及并发集合等,同时提供实用的编程技巧和最佳实践,帮助开发者在保证线程安全的前提下,优化程序性能。我们将通过分析常见的并发问题,如竞态条件、死锁,以及如何利用现代Java并发工具来避免这些问题,从而构建更加健壮和高效的多线程应用程序。
|
9天前
|
Java
Java并发编程:深入理解线程池
【4月更文挑战第7天】在现代软件开发中,多线程编程已经成为一种不可或缺的技术。为了提高程序性能和资源利用率,Java提供了线程池这一强大工具。本文将深入探讨Java线程池的原理、使用方法以及如何根据实际需求定制线程池,帮助读者更好地理解和应用线程池技术。
15 0
|
1天前
|
设计模式 运维 安全
深入理解Java并发编程:线程安全与性能优化
【4月更文挑战第15天】在Java开发中,多线程编程是提升应用程序性能和响应能力的关键手段。然而,它伴随着诸多挑战,尤其是在保证线程安全的同时如何避免性能瓶颈。本文将探讨Java并发编程的核心概念,包括同步机制、锁优化、线程池使用以及并发集合等,旨在为开发者提供实用的线程安全策略和性能优化技巧。通过实例分析和最佳实践的分享,我们的目标是帮助读者构建既高效又可靠的多线程应用。
|
2天前
|
Java 程序员 编译器
Java中的线程同步与锁优化策略
【4月更文挑战第14天】在多线程编程中,线程同步是确保数据一致性和程序正确性的关键。Java提供了多种机制来实现线程同步,其中最常用的是synchronized关键字和Lock接口。本文将深入探讨Java中的线程同步问题,并分析如何通过锁优化策略提高程序性能。我们将首先介绍线程同步的基本概念,然后详细讨论synchronized和Lock的使用及优缺点,最后探讨一些锁优化技巧,如锁粗化、锁消除和读写锁等。
|
4天前
|
Java
探秘jstack:解决Java应用线程问题的利器
探秘jstack:解决Java应用线程问题的利器
14 1
探秘jstack:解决Java应用线程问题的利器