Linux之V4L2基础编程【转】

简介:

转自:http://www.cnblogs.com/emouse/archive/2013/03/04/2943243.html

本文内容来源于网络,本博客进行整理。

1. 定义

V4L2(Video For Linux Two) 是内核提供给应用程序访问音、视频驱动的统一接口。

2. 工作流程:

打开设备-> 检查和设置设备属性-> 设置帧格式-> 设置一种输入输出方法(缓冲 区管理)-> 循环获取数据-> 关闭设备。

3. 设备的打开和关闭:

复制代码
#include <fcntl.h>

int open(const char *device_name, int flags);

#include <unistd.h>

int clo se(int fd);
复制代码

例:

int fd=open(“/dev/video0”,O_RDWR); // 打开设备

close(fd); // 关闭设备

注意:V4L2 的相关定义包含在头文件<linux/videodev2.h> 中.

4. 查询设备属性: VIDIOC_QUERYCAP

相关函数:

int ioctl(int fd, int request, struct v4l2_capability *argp);

相关结构体:

复制代码
复制代码
struct v4l2_capability

{

u8 driver[16]; // 驱动名字
 u8 card[32]; // 设备名字  u8 bus_info[32]; // 设备在系统中的位置  u32 version; // 驱动版本号  u32 capabilities; // 设备支持的操作  u32 reserved[4]; // 保留字段  };
复制代码
复制代码

capabilities 常用值:

V4L2_CAP_VIDEO_CAPTURE // 是否支持图像获取

例:显示设备信息

struct v4l2_capability cap;

ioctl(fd,VIDIOC_QUERYCAP,&cap);

printf(“Driver Name:%s\nCard Name:%s\nBus info:%s\nDriver Version:%u.%u.%u\n”,cap.driver,cap.card,cap.bus_info,(cap.version>>16)&0XFF, (cap.version>>8)&0XFF,cap.version&0XFF);

5. 设置视频的制式和帧格式

制式包括PAL,NTSC,帧的格式个包括宽度和高度等。

相关函数:

int ioctl(int fd, int request, struct v4l2_fmtdesc *argp);

int ioctl(int fd, int request, struct v4l2_format *argp);

相关结构体:

v4l2_cropcap 结构体用来设置摄像头的捕捉能力,在捕捉上视频时应先先设置

v4l2_cropcap 的 type 域,再通过 VIDIO_CROPCAP 操作命令获取设备捕捉能力的参数,保存于 v4l2_cropcap 结构体中,包括 bounds(最大捕捉方框的左上角坐标和宽高),defrect

(默认捕捉方框的左上角坐标和宽高)等。

v4l2_format 结构体用来设置摄像头的视频制式、帧格式等,在设置这个参数时应先填 好 v4l2_format 的各个域,如 type(传输流类型),fmt.pix.width(宽),

fmt.pix.heigth(高),fmt.pix.field(采样区域,如隔行采样),fmt.pix.pixelformat(采

样类型,如 YUV4:2:2),然后通过 VIDIO_S_FMT 操作命令设置视频捕捉格式。如下图所示:

clip_image004

5.1 查询并显示所有支持的格式:VIDIOC_ENUM_FMT

相关函数:

int ioctl(int fd, int request, struct v4l2_fmtdesc *argp);

相关结构体:

复制代码
复制代码
struct v4l2_fmtdesc

{

u32 index; // 要查询的格式序号,应用程序设置

enum v4l2_buf_type type; // 帧类型,应用程序设置  u32 flags; // 是否为压缩格式  u8 description[32]; // 格式名称  u32 pixelformat; // 格式  u32 reserved[4]; // 保留  };
复制代码
复制代码

例:显示所有支持的格式

复制代码
复制代码
struct v4l2_fmtdesc fmtdesc; fmtdesc.index=0; fmtdesc.type=V4L2_BUF_TYPE_VIDEO_CAPTURE; printf("Support format:\n"); while(ioctl(fd, VIDIOC_ENUM_FMT, &fmtdesc) != -1) { printf("\t%d.%s\n",fmtdesc.index+1,fmtdesc.description); fmtdesc.index++; }
复制代码
复制代码

5.2 查看或设置当前格式: VIDIOC_G_FMT, VIDIOC_S_FMT

检查是否支持某种格式:VIDIOC_TRY_FMT

相关函数:

int ioctl(int fd, int request, struct v4l2_format *argp);

相关结构体:

复制代码
复制代码
struct v4l2_format

{

enum v4l2_buf_type type; // 帧类型,应用程序设置
 union fmt { struct v4l2_pix_format pix; // 视频设备使用 struct v4l2_window win; struct v4l2_vbi_format vbi; struct v4l2_sliced_vbi_format sliced; u8 raw_data[200]; }; }; struct v4l2_pix_format { u32 width; // 帧宽,单位像素  u32 height; // 帧高,单位像素  u32 pixelformat; // 帧格式 enum v4l2_field field; u32 bytesperline; u32 sizeimage; enum v4l2_colorspace colorspace; u32 priv; };
复制代码
复制代码

例:显示当前帧的相关信息

复制代码
复制代码
struct v4l2_format fmt; fmt.type=V4L2_BUF_TYPE_VIDEO_CAPTURE; ioctl(fd, VIDIOC_G_FMT, &fmt);

printf(“Current data format information:\n\twidth:%d\n\theight:%d\n”,

fmt.fmt.pix.width,fmt.fmt.pix.height);

struct v4l2_fmtdesc fmtdesc; fmtdesc.index=0; fmtdesc.type=V4L2_BUF_TYPE_VIDEO_CAPTURE; while(ioctl(fd,VIDIOC_ENUM_FMT,&fmtdesc)!=-1) { if(fmtdesc.pixelformat & fmt.fmt.pix.pixelformat) { printf(“\tformat:%s\n”,fmtdesc.description); break; } fmtdesc.index++; }
复制代码
复制代码

例:检查是否支持某种帧格式

struct v4l2_format fmt; fmt.type=V4L2_BUF_TYPE_VIDEO_CAPTURE; fmt.fmt.pix.pixelformat=V4L2_PIX_FMT_RGB32; if(ioctl(fd,VIDIOC_TRY_FMT,&fmt)==-1) if(errno==EINVAL)

printf(“not support format RGB32!\n”);

6. 图像的缩放 VIDIOC_CROPCAP

相关函数:

int ioctl(int fd, int request, struct v4l2_cropcap *argp);

int ioctl(int fd, int request, struct v4l2_crop *argp); int ioctl(int fd, int request, const struct v4l2_crop *argp);

相关结构体:

Cropping 和 scaling 主要指的是图像的取景范围及图片的比例缩放的支持。Crop 就 是把得到的数据作一定的裁剪和伸缩,裁剪可以只取样我们可以得到的图像大小的一部分, 剪裁的主要参数是位置、长度、宽度。而 scale 的设置是通过 VIDIOC_G_FMT 和 VIDIOC_S_FMT 来获得和设置当前的 image 的长度,宽度来实现的。看下图

image

我们可以假设 bounds 是 sensor 最大能捕捉到的图像范围,而 defrect 是设备默认 的最大取样范围,这个可以通过 VIDIOC_CROPCAP 的 ioctl 来获得设备的 crap 相关的属 性 v4l2_cropcap,其中的 bounds 就是这个 bounds,其实就是上限。每个设备都有个默 认的取样范围,就是 defrect,就是 default rect 的意思,它比 bounds 要小一些。这 个范围也是通过 VIDIOC_CROPCAP 的 ioctl 来获得的 v4l2_cropcap 结构中的 defrect 来表示的,我们可以通过 VIDIOC_G_CROP 和 VIDIOC_S_CROP 来获取和设置设备当前的 crop 设置。

6.1 设置设备捕捉能力的参数

相关函数:

int ioctl(int fd, int request, struct v4l2_cropcap *argp);

相关结构体:

复制代码
复制代码
struct v4l2_cropcap

{

enum v4l2_buf_type type; // 数据流的类型,应用程序设置

struct v4l2_rect bounds; // 这是 camera 的镜头能捕捉到的窗口大小的局限 struct v4l2_rect defrect; // 定义默认窗口大小,包括起点位置及长,宽的大小,大小以像素为单位 struct v4l2_fract pixelaspect; // 定义了图片的宽高比  };
复制代码
复制代码

6.2 设置窗口取景参数 VIDIOC_G_CROP 和 VIDIOC_S_CROP

相关函数:

int ioctl(int fd, int request, struct v4l2_crop *argp);

int ioctl(int fd, int request, const struct v4l2_crop *argp);

相关结构体:

复制代码
复制代码
struct v4l2_crop

{

enum v4l2_buf_type type;// 应用程序设置

struct v4l2_rect c; }
复制代码
复制代码

7.video Inputs and Outputs

VIDIOC_G_INPUT 和 VIDIOC_S_INPUT 用来查询和选则当前的 input,一个 video 设备 节点可能对应多个视频源,比如 saf7113 可以最多支持四路 cvbs 输入,如果上层想在四 个cvbs视频输入间切换,那么就要调用 ioctl(fd, VIDIOC_S_INPUT, &input) 来切换。

VIDIOC_G_INPUT and VIDIOC_G_OUTPUT 返回当前的 video input和output的index.

相关函数:

int ioctl(int fd, int request, struct v4l2_input *argp);

相关结构体:

复制代码
复制代码
struct v4l2_input {
__u32 index; /* Which input */ __u8 name[32]; /* Label */ __u32 type; /* Type of input */ __u32 audioset; /* Associated audios (bitfield) */ __u32 tuner; /* Associated tuner */ v4l2_std_id std; __u32 status; __u32 reserved[4]; };
复制代码
复制代码

我们可以通过VIDIOC_ENUMINPUT and VIDIOC_ENUMOUTPUT 分别列举一个input或者 output的信息,我们使用一个v4l2_input结构体来存放查询结果,这个结构体中有一个 index域用来指定你索要查询的是第几个input/ouput,如果你所查询的这个input是当前正 在使用的,那么在v4l2_input还会包含一些当前的状态信息,如果所 查询的input/output 不存在,那么回返回EINVAL错误,所以,我们通过循环查找,直到返回错误来遍历所有的 input/output. VIDIOC_G_INPUT and VIDIOC_G_OUTPUT 返回当前的video input和output 的index.

例: 列举当前输入视频所支持的视频格式

复制代码
复制代码
struct v4l2_input input;

struct v4l2_standard standard;

memset (&input, 0, sizeof (input)); //首先获得当前输入的 index,注意只是 index,要获得具体的信息,就的调用列举操作 if (-1 == ioctl (fd, VIDIOC_G_INPUT, &input.index)) { perror (”VIDIOC_G_INPUT”); exit (EXIT_FAILURE); } //调用列举操作,获得 input.index 对应的输入的具体信息 if (-1 == ioctl (fd, VIDIOC_ENUMINPUT, &input)) { perror (”VIDIOC_ENUM_INPUT”); exit (EXIT_FAILURE); } printf (”Current input %s supports:\n”, input.name); memset (&standard, 0, sizeof (standard)); standard.index = 0; //列举所有的所支持的 standard,如果 standard.id 与当前 input 的 input.std 有共同的  bit flag,意味着当前的输入支持这个 standard,这样将所有驱动所支持的 standard 列举一个 遍,就可以找到该输入所支持的所有 standard 了。 while (0 == ioctl (fd, VIDIOC_ENUMSTD, &standard)) { if (standard.id & input.std) printf (”%s\n”, standard.name); standard.index++; } /* EINVAL indicates the end of the enumeration, which cannot be empty unless this device falls under the USB exception. */ if (errno != EINVAL || standard.index == 0) { perror (”VIDIOC_ENUMSTD”); exit (EXIT_FAILURE); }
复制代码
复制代码

8. Video standards

相关函数:

v4l2_std_id std_id; //这个就是个64bit得数

int ioctl(int fd, int request, struct v4l2_standard *argp);

相关结构体:

复制代码
复制代码
typedef u64 v4l2_std_id;

struct v4l2_standard {

u32 index;

v4l2_std_id id;

u8 name[24];

struct v4l2_fract frameperiod; /* Frames, not fields */ u32 framelines; u32 reserved[4]; };
复制代码
复制代码

当然世界上现在有多个视频标准,如NTSC和PAL,他们又细分为好多种,那么我们的设 备输入/输出究竟支持什么样的标准呢?我们的当前在使用的输入和输出正在使用的是哪 个标准呢?我们怎么设置我们的某个输入输出使用的标准呢?这都是有方法的。

查询我们的输入支持什么标准,首先就得找到当前的这个输入的index,然后查出它的 属性,在其属性里面可以得到该输入所支持的标准,将它所支持的各个标准与所有的标准 的信息进行比较,就可以获知所支持的各个标准的属性。一个输入所支持的标准应该是一 个集合,而这个集合是用bit与的方式用一个64位数字表示。因此我们所查到的是一个数字。

Example: Information about the current video standard v4l2_std_id std_id; //这个就是个64bit得数

复制代码
复制代码
struct v4l2_standard standard;

// VIDIOC_G_STD就是获得当前输入使用的standard,不过这里只是得到了该标准的id

// 即flag,还没有得到其具体的属性信息,具体的属性信息要通过列举操作来得到。 if (-1 == ioctl (fd, VIDIOC_G_STD, &std_id)) { //获得了当前输入使用的standard // Note when VIDIOC_ENUMSTD always returns EINVAL this is no video device // or it falls under the USB exception, and VIDIOC_G_STD returning EINVAL // is no error.  perror (”VIDIOC_G_STD”); exit (EXIT_FAILURE); } memset (&standard, 0, sizeof (standard)); standard.index = 0; //从第一个开始列举 // VIDIOC_ENUMSTD用来列举所支持的所有的video标准的信息,不过要先给standard // 结构的index域制定一个数值,所列举的标 准的信息属性包含在standard里面, // 如果我们所列举的标准和std_id有共同的bit,那么就意味着这个标准就是当前输 // 入所使用的标准,这样我们就得到了当前输入使用的标准的属性信息 while (0 == ioctl (fd, VIDIOC_ENUMSTD, &standard)) { if (standard.id & std_id) { printf (”Current video standard: %s\n”, standard.name); exit (EXIT_SUCCESS); } standard.index++; } /* EINVAL indicates the end of the enumeration, which cannot be empty unless this device falls under the USB exception. */ if (errno == EINVAL || standard.index == 0) { perror (”VIDIOC_ENUMSTD”); exit (EXIT_FAILURE); }
复制代码
复制代码

9. 申请和管理缓冲区

应用程序和设备有三种交换数据的方法,直接 read/write、内存映射(memory mapping)

和用户指针。这里只讨论内存映射(memory mapping)。

9.1 向设备申请缓冲区 VIDIOC_REQBUFS

相关函数:

int ioctl(int fd, int request, struct v4l2_requestbuffers *argp);

相关结构体:

复制代码
复制代码
struct v4l2_requestbuffers

{

u32 count; // 缓冲区内缓冲帧的数目

enum v4l2_buf_type type; // 缓冲帧数据格式 enum v4l2_memory memory; // 区别是内存映射还是用户指针方式  u32 reserved[2]; };
复制代码
复制代码

注:enum v4l2_memoy

{

V4L2_MEMORY_MMAP, V4L2_MEMORY_USERPTR

};

//count,type,memory 都要应用程序设置

例:申请一个拥有四个缓冲帧的缓冲区

复制代码
复制代码
struct v4l2_requestbuffers req; 

req.count=4; req.type=V4L2_BUF_TYPE_VIDEO_CAPTURE; 

req.memory=V4L2_MEMORY_MMAP; 

ioctl(fd,VIDIOC_REQBUFS,&req);
复制代码
复制代码

9.2 获取缓冲帧的地址,长度:VIDIOC_QUERYBUF

相关函数:

int ioctl(int fd, int request, struct v4l2_buffer *argp);

相关结构体:

复制代码
复制代码
struct v4l2_buffer

{

u32 index; //buffer 序号

enum v4l2_buf_type type; //buffer 类型  u32 byteused; //buffer 中已使用的字节数  u32 flags; // 区分是MMAP 还是USERPTR enum v4l2_field field; struct timeval timestamp; // 获取第一个字节时的系统时间 struct v4l2_timecode timecode; u32 sequence; // 队列中的序号 enum v4l2_memory memory; //IO 方式,被应用程序设置  union m { u32 offset; // 缓冲帧地址,只对MMAP 有效  unsigned long userptr; }; u32 length; // 缓冲帧长度  u32 input; u32 reserved; };
复制代码
复制代码

9.3 内存映射MMAP 及定义一个结构体来映射每个缓冲帧。 相关结构体:

复制代码
复制代码
struct buffer

{

void* start;

unsigned int length; }*buffers;
复制代码
复制代码

相关函数:

#include <sys/mman.h>

void *mmap(void *addr, size_t length, int prot, int flags, int fd, off_t offset)

//addr 映射起始地址,一般为NULL ,让内核自动选择

//length 被映射内存块的长度

//prot 标志映射后能否被读写,其值为PROT_EXEC,PROT_READ,PROT_WRITE, PROT_NONE

//flags 确定此内存映射能否被其他进程共享,MAP_SHARED,MAP_PRIVATE

//fd,offset, 确定被映射的内存地址 返回成功映射后的地址,不成功返回MAP_FAILED ((void*)-1)

相关函数:

int munmap(void *addr, size_t length);// 断开映射

//addr 为映射后的地址,length 为映射后的内存长度

例:将四个已申请到的缓冲帧映射到应用程序,用buffers 指针记录。

复制代码
复制代码
buffers = (buffer*)calloc (req.count, sizeof (*buffers));

if (!buffers) {

// 映射  fprintf (stderr, "Out of memory/n"); exit (EXIT_FAILURE); } for (unsigned int n_buffers = 0; n_buffers < req.count; ++n_buffers) { struct v4l2_buffer buf; memset(&buf,0,sizeof(buf)); buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE; buf.memory = V4L2_MEMORY_MMAP; buf.index = n_buffers; // 查询序号为n_buffers 的缓冲区,得到其起始物理地址和大小 if (-1 == ioctl (fd, VIDIOC_QUERYBUF, &buf)) exit(-1); buffers[n_buffers].length = buf.length; // 映射内存  buffers[n_buffers].start =mmap (NULL,buf.length,PROT_READ | PROT_WRITE ,MAP_SHARED,fd, buf.m.offset); if (MAP_FAILED == buffers[n_buffers].start) exit(-1); }
复制代码
复制代码

10. 缓冲区处理好之后,就可以开始获取数据了

10.1 启动 或 停止数据流 VIDIOC_STREAMON, VIDIOC_STREAMOFF

int ioctl(int fd, int request, const int *argp);

//argp 为流类型指针,如V4L2_BUF_TYPE_VIDEO_CAPTURE.

10.2 在开始之前,还应当把缓冲帧放入缓冲队列:

VIDIOC_QBUF// 把帧放入队列

VIDIOC_DQBUF// 从队列中取出帧

int ioctl(int fd, int request, struct v4l2_buffer *argp);

例:把四个缓冲帧放入队列,并启动数据流

复制代码
复制代码
unsigned int i;

enum v4l2_buf_type type;

for (i = 0; i < 4; ++i) // 将缓冲帧放入队列  { struct v4l2_buffer buf; buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE; buf.memory = V4L2_MEMORY_MMAP; buf.index = i; ioctl (fd, VIDIOC_QBUF, &buf); } type = V4L2_BUF_TYPE_VIDEO_CAPTURE; ioctl (fd, VIDIOC_STREAMON, &type); // 这有个问题,这些buf 看起来和前面申请的buf 没什么关系,为什么呢?
复制代码
复制代码

例:获取一帧并处理

复制代码
复制代码
struct v4l2_buffer buf; CLEAR (buf);

buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;

buf.memory = V4L2_MEMORY_MMAP;

ioctl (fd, VIDIOC_DQBUF, &buf); // 从缓冲区取出一个缓冲帧  process_image (buffers[buf.index.]start); //  ioctl (fdVIDIOC_QBUF&buf); //
复制代码
复制代码




相关文章
|
28天前
|
算法 Linux C++
【Linux系统编程】解析获取和设置文件信息与权限的Linux系统调用
【Linux系统编程】解析获取和设置文件信息与权限的Linux系统调用
29 0
|
28天前
|
算法 Linux C++
【Linux系统编程】深入解析Linux中read函数的错误场景
【Linux系统编程】深入解析Linux中read函数的错误场景
202 0
|
28天前
|
Linux API C语言
【Linux系统编程】深入理解Linux 组ID和附属组ID的查询与设置
【Linux系统编程】深入理解Linux 组ID和附属组ID的查询与设置
34 0
【Linux系统编程】深入理解Linux 组ID和附属组ID的查询与设置
|
1月前
|
Linux 数据处理 C++
Linux系统编程 C/C++ 以及Qt 中的零拷贝技术: 从底层原理到高级应用(一)
Linux系统编程 C/C++ 以及Qt 中的零拷贝技术: 从底层原理到高级应用
71 0
|
1月前
|
存储 Linux 测试技术
无效数据处理之道:Linux系统编程C/C++实践探索(三)
无效数据处理之道:Linux系统编程C/C++实践探索
17 0
|
1月前
|
存储 测试技术 Linux
无效数据处理之道:Linux系统编程C/C++实践探索(二)
无效数据处理之道:Linux系统编程C/C++实践探索
31 0
|
1月前
|
安全 Linux 测试技术
无效数据处理之道:Linux系统编程C/C++实践探索(一)
无效数据处理之道:Linux系统编程C/C++实践探索
70 0
|
1月前
|
存储 Linux 编译器
Linux C/C++ 编程 内存管理之道:探寻编程世界中的思维乐趣
Linux C/C++ 编程 内存管理之道:探寻编程世界中的思维乐趣
50 0
|
1月前
|
存储 Linux API
Linux系统编程 C/C++ 以及Qt 中的零拷贝技术: 从底层原理到高级应用(三)
Linux系统编程 C/C++ 以及Qt 中的零拷贝技术: 从底层原理到高级应用
31 1
|
1月前
|
消息中间件 Linux 数据处理
Linux系统编程 C/C++ 以及Qt 中的零拷贝技术: 从底层原理到高级应用(二)
Linux系统编程 C/C++ 以及Qt 中的零拷贝技术: 从底层原理到高级应用
32 1