Java 实现的各种经典的排序算法小Demo

简介: 由于有上机作业,所以就对数据结构中常用的各种排序算法都写了个Demo,有如下几个:直接插入排序折半插入排序希尔排序冒泡排序快速排序选择排序桶排序 Demo下载地址 下面谈一谈我对这几个排序算法的理解:插入类算法对于直接插入排序:(按从小到大的...

由于有上机作业,所以就对数据结构中常用的各种排序算法都写了个Demo,有如下几个:

  • 直接插入排序
  • 折半插入排序
  • 希尔排序
  • 冒泡排序
  • 快速排序
  • 选择排序
  • 桶排序
    Demo下载地址

下面谈一谈我对这几个排序算法的理解:

插入类算法

对于直接插入排序:(按从小到大的顺序)
核心原理:
若数组中只有一个元素,那么这就已经是有序的了;若数组中元素个数为两个,我们只需要对他们进行比较一次,要么交换顺序,要么不交换顺序就可以实现数组的内容的有序化;但是当数组内的元素的个数为N个呢?又该如何?这就催化了这个直接插入排序算法,其核心就是利用了有序化数组的方式,认为再插入一个新的元素之前都是有序的,只需要从后往前进行查找(找到一个小于待插入数据的位置,记为position,然后把这个数据之后的元素全部向后迁移一个,再把待插入数据插入到position+1的位置即可。(小伙伴们可以想象一下为什么是position+1,因为position位置上的数据小于我们的待插入的数据啊,所以要插在Position的下一个位置上!)

public static void DirectoryInsert(int []array,int length){
        int p,i;
        for(p=1;p<length;p++){
            int temp=array[p];
            i=p-1;
            while(i>=0&&array[i]>temp){
                array[i+1]=array[i];
                i--;
            }
            array[i+1]=temp;
        }
    }

关于折半插入排序算法:
核心原理:
折半插入的核心原理仍然是基于有序表的插入算法,找到位置后,仍然采用插入的方式进行数据添加。但是较之于直接插入有很大的提升,那就是在查找插入位置上的优化,速度上稍微有了一定的提升,虽然在乱序的数据上有良好的效果,但是时间复杂度仍然很大O(n^2)。是稳定的算法。
下面是代码的实现:

private static void Half(int[] array, int length) {
        //p stands for the times of the sort
        int left,right,mid,p;
        for(p=1;p<length;p++){
            int temp=array[p];
            left=0;right=p-1;
            while(left<=right){
                mid=(left+right)/2;
                if(array[mid]>temp){
                    right=mid-1;
                }else{
                    left=mid+1;
                }
            }
            for(int i=p-1;i>=left;i--){
                array[i+1]=array[i];
            }
            array[left]=temp;
        }
    }

对于希尔排序:
核心原理:
希尔排序核心仍然是基于插入方式的,以逐步减小“步长”,采用“分治”的思想对每一个子序列进行排序。最终实现对整个序列的排序。
特点:希尔排序是不稳定的排序算法,会导致数据原始相对位置的改变。如果以步长为2计算,其时间复杂度可达到O(n^2),若数据足够长,步长也足够大那么时间复杂度将接近与O(n),但是一般认为其为O(n^1.3)。
代码实现:

private static void Shell(int[] array, int length) {
        // TODO Auto-generated method stub
        int d=length/2;
        while(d>=1){
            for(int k=0;k<d;k++){
                //to every sub,carry the direcly insert 
                for(int i=k+d;i<length;i+=d){
                    int temp=array[i];
                    int j=i-d;
                    while(j>=k&&array[j]>temp){
                        array[j+d]=array[j];
                        j-=d;
                    }
                    array[j+d]=temp;
                }
            }
            d=d/2;
        }
    }

交换类排序算法


对于冒泡排序:
核心原理:
冒泡排序是我们接触比较早的一个排序算法,其原理就是对数据两两进行比较大小,并对符合要求的数据进行交换。循环n-1次,便可以对n 个数据实现排序。
特点:
时间复杂度O(n^2),由于数据发生交换时并没有发生原始位置的变化,所以冒泡排序算法是稳定的排序算法。
代码实现:

private static void Bubble(int[] array, int length) {
        // TODO Auto-generated method stub
        for(int i=0;i<length;i++){
            //expeclally the end case is "length-i"
            for(int j=1;j<length-i;j++){
                if(array[j-1]>array[j]){
                    int temp=array[j];
                    array[j]=array[j-1];
                    array[j-1]=temp;
                }
            }
        }
    }

对于冒泡排序,这里还有一个改进版的冒泡,是针对于特殊情况下的排序的处理,比如一个已经有序的序列如果再进行正常的冒泡的话,就会浪费时间,所以,如果一个序列已经是有序的,那么就应该跳出这个序列的冒泡,从而在一定程度上减少了时间的浪费。
代码实现:

private static void BubbleBetter(int[] array, int length) {
        // TODO Auto-generated method stub
        boolean flag=false;
        for(int i=0;i<length;i++){
            //expeclally the end case is "length-i"
            for(int j=1;j<length-i;j++){
                flag=false;
                if(array[j-1]>array[j]){
                    int temp=array[j];
                    array[j]=array[j-1];
                    array[j-1]=temp;
                    flag=true;
                }
            }
            if(flag){
                return;
            }
        }
    }

快速排序算法:
核心原理:
快速排序的原理是找到轴值pivot(这里有两种方式,从代码中可以清晰地看到,但最终结果都是一样的,那就是找到这个分割点,再递归的进行排序。
特征:
时间复杂度为O(nlogn,已2为底);
代码如下:

private static void Fast(int[] array, int left, int right) {
        // TODO Auto-generated method stub
        if (left < right) {
            int p = Partition1(array, left, right);
            Fast(array, left, p - 1);
            Fast(array, p + 1, right);
        }
//      if (left < right) {
//          int p = Partition2(array, left, right);
//          Fast(array, left, p - 1);
//          Fast(array, p + 1, right);
//      }
    }

    private static int Partition1(int[] array, int left, int right) {
        int pivot = array[left];
        while (left < right) {
            while (left < right && array[right] >= pivot) {
                right--;
            }
            array[left] = array[right];
            while (left < right && array[left] <= pivot) {
                left++;
            }
            array[right] = array[left];
        }
        array[left] = pivot;
        return left;
    }

    private static int Partition2(int[] array, int start, int end) {
        int pivot = array[start];
        int left = start, right = end;
        while (left <= right) {
            while (left <= right && array[left] <= pivot) {
                left++;
            }
            while (left <= right && array[right] >= pivot) {
                right--;
            }
            if (left < right) {
                Swap(array[right], array[left]);
                left++;
                right--;
            }
        }
        Swap(array[start], array[right]);
        return right;

    }

选择类排序算法


对于选择排序:
核心原理:
两轮循环,第一轮是选择的次数的记录,第二轮是目标查找。所谓目标查找,就是找到一个符合要求的值,记录其位置,然后在第一轮的循环中进行判断,将符合条件者进行交换,如此可实现排序的功能。
特征:
时间复杂度O(n^2),交换n-1次,比较了n^2次。是不稳定的排序算法。
代码:

private static void Select(int[] array, int length) {
        // TODO Auto-generated method stub
        for(int i=1;i<length;i++){
            int k=i-1;
            for(int j=i;j<length;j++){
                if(array[j]<array[k]){
                    k=j;
                }
            }
            if(k!=i-1){
                int temp=array[i-1];
                array[i-1]=array[k];
                array[k]=temp;
            }
        }
    }

归并类排序算法


对于归并排序:
核心原理:
若一个序列只有一个元素,则它是有序的,归并排序不执行任何操作。否则归并排序将执行下面的递归步骤:
1)先把序列划分为长度基本相等的子序列
2)对每个子序列归并并排序
3)把排好序的子序列合并为最终的结果。
特征:
时间复杂度O(nlogn),是不依赖于数据原始顺序的不稳定的排序算法。
代码如下:

private static void MergeFunction(int[] array,int start, int end) {
        // TODO Auto-generated method stub
        if(start<end){
            int mid=(start+end)/2;
            MergeFunction(array, start, mid);
            MergeFunction(array, mid+1, end);
            Merge(array,start,mid,end);
        }
    }

    private static void Merge(int[] array, int start, int mid, int end) {
        // TODO Auto-generated method stub
        int len1=mid-start+1,len2=end-mid;
        int i,j,k;
        //声明数组,分别保存子串信息
        int[] left=new int[len1];
        int[] right=new int[len2];
        for(i=0;i<len1;i++){//执行数据复制
            left[i]=array[i+start];
        }
        for(i=0;i<len2;i++){//执行数据复制
            right[i]=array[i+mid+1];
        }
        i=0;j=0;
        //执行合并操作
        for(k=start;k<end;k++){
            if(i==len1||j==len2){
                break;
            }
            if(left[i]<right[j]){
                array[k]=left[i++];
            }else{
                array[k]=right[j++];
            }
        }

        //若array[start,mid]还有待归并数据,则放到array后面
        while(i<len1){
            array[k++]=left[i++];
        }

        //对array[mid+1,end]见得数据执行同样的操作
        while(j<len2){
            array[k++]=left[j++];
        }
        //释放内存操作
        left=null;
        right=null;

    }

总结:
排序算法多种多样,在不同的情况下选择合适的排序算法能让你事半功倍。

目录
相关文章
|
1月前
|
算法 搜索推荐 Java
数据结构与算法(Java篇)笔记--希尔排序
数据结构与算法(Java篇)笔记--希尔排序
|
1月前
|
算法 Java
[Java·算法·简单] LeetCode 27. 移除元素 详细解读
[Java·算法·简单] LeetCode 27. 移除元素 详细解读
23 1
|
1月前
|
算法 Java
[Java·算法·简单] LeetCode 13. 罗马数字转整数 详细解读
[Java·算法·简单] LeetCode 13. 罗马数字转整数 详细解读
23 0
|
29天前
|
存储 算法 Java
Java数据结构与算法-java数据结构与算法(二)
Java数据结构与算法-java数据结构与算法
87 1
|
1月前
|
算法 Java
[Java·算法·中等] LeetCode15. 三数之和
[Java·算法·中等] LeetCode15. 三数之和
30 0
|
2天前
|
设计模式 算法 Java
[设计模式Java实现附plantuml源码~行为型]定义算法的框架——模板方法模式
[设计模式Java实现附plantuml源码~行为型]定义算法的框架——模板方法模式
|
17天前
|
算法 安全 Java
java代码 实现AES_CMAC 算法测试
该代码实现了一个AES-CMAC算法的简单测试,使用Bouncy Castle作为安全提供者。静态变量K定义了固定密钥。`Aes_Cmac`函数接受密钥和消息,返回AES-CMAC生成的MAC值。在`main`方法中,程序对给定的消息进行AES-CMAC加密,然后模拟接收ECU的加密结果并进行比较。如果两者匹配,输出&quot;验证成功&quot;,否则输出&quot;验证失败&quot;。辅助方法包括将字节转为16进制字符串和将16进制字符串转为字节。
|
24天前
|
搜索推荐 Java
Java排序算法
Java排序算法
18 0
|
24天前
|
搜索推荐 Java
Java基础(快速排序算法)
Java基础(快速排序算法)
24 4
|
27天前
|
存储 算法 JavaScript
Java入门高频考查算法逻辑基础知识3-编程篇(超详细18题1.8万字参考编程实现)
解决这类问题时,建议采取下面的步骤: 理解数学原理:确保你懂得基本的数学公式和法则,这对于制定解决方案至关重要。 优化算法:了解时间复杂度和空间复杂度,并寻找优化的机会。特别注意避免不必要的重复计算。 代码实践:多编写实践代码,并确保你的代码是高效、清晰且稳健的。 错误检查和测试:要为你的代码编写测试案例,测试标准的、边缘情况以及异常输入。 进行复杂问题简化:面对复杂的问题时,先尝试简化问题,然后逐步分析和解决。 沟通和解释:在编写代码的时候清晰地沟通你的思路,不仅要写出正确的代码,还要能向面试官解释你的
33 0