java泛型总结

简介: 什么是泛型泛型是jdk5引入的类型机制,就是将类型参数化,它是早在1999年就制定的jsr14的实现。

什么是泛型

泛型是jdk5引入的类型机制,就是将类型参数化,它是早在1999年就制定的jsr14的实现。

泛型机制将类型转换时的类型检查从运行时提前到了编译时,使用泛型编写的代码比杂乱的使用object并在需要时再强制类型转换的机制具有更好的可读性和安全性。

泛型程序设计意味着程序可以被不同类型的对象重用,类似c++的模版。

泛型对于集合类尤其有用,如ArrayList。这里可能有疑问,既然泛型为了适应不同的对象,ArrayList本来就可以操作不同类型的对象呀?那是因为没有泛型之前采用继承机制实现的,实际上它只维护了一个Object对象的数组。结果就是对List来说它只操作了一类对象Object,而在用户看来却可以保存不同的对象。

泛型提供了更好的解决办法——类型参数,如:

List<String> list = new ArrayList<String>();

这样解决了几个问题:

1 可读性,从字面上就可以判断集合中的内容类型;
2 类型检查,避免插入非法类型。
3 获取数据时不在需要强制类型转换。

泛型类

public class Pair<T>{
    private T field1;
}

其中 <T> 是类型参数定义。

使用时:Pair<String> p = new Pair<String>();

此时类内部的field1就是字符串类型了。

如果引用多个类型,可以使用逗号分隔:<S, D>

类型参数名可以使用任意字符串,建议使用有代表意义的单个字符,以便于和普通类型名区分,如:T代表type,有原数据和目的数据就用SD,子元素类型用E等。当然,你也可以定义为XYZ,甚至xyZ

泛型方法

泛型方法定义如下:

public static <T> T marshalle(T arg){}

与泛型类一样,<T> 是类型参数定义。如:

public class GenericMethod {
    public static <T> T getMiddle(T... a){
        return a[a.length/2];
    }
}

严格的调用方式:

String o=GenericMethod.<String>getMiddle("213","result","12");

一般情况下调用时可以省略,看起来就像定义String类型参数的方法:
GenericMethod.getMiddle(String,String,String),这是因为jdk会根据参数类型进行推断。看一下下面的例子:

Object o=GenericMethod.getMiddle("213",0,"12");
System.out.println(o.getClass());
System.out.println(o);

输出结果为:

class java.lang.Integer
0

这是因为jdk推断三个参数的共同父类,匹配为Object,那么相当于:

Object o=GenericMethod.<Object>getMiddle("213",0,"12");

习惯了类型参数放在类的后面,如ArrayList<String>,泛型方法为什么不放在后面?看一个例子:

public static <T,S> T f(T t){return t;}
public static class a{}
public static class b{}
//尽量恶心一点

@Test
public void test(){
  a c=new a();
    <a,b>f(c);//OK
  f<a,b>(c);//error,看起来像是一个逗号运算符连接的两个逻辑表达式,当然目前java中除了for(...)并不支持逗号运算符
}

因此,为了避免歧义,jdk采用类型限定符前置。

泛型方法与泛型类的方法

如果泛型方法定义在泛型类中,而且类型参数一样:

public class GenericMethod<T> {
    public <T> void sayHi(T t){
        System.out.println("Hi "+t);
    }
}

是不是说,定义GenericMethod时传了 Integer 类型,sayHi()也就自动变成 Integer 了呢?No。

String i="abc";
new GenericMethod<Integer>().<String>sayHi(i);

该代码运行一点问题都没有。原因就在于泛型方法中的<T>,如果去掉它,就有问题了。

The method sayHi(Integer) in the type GenericMethod<Integer> is not applicable for the arguments
 (String)

小结:

泛型方法有自己的类型参数,泛型类的成员方法使用的是当前类的类型参数。

方法中有<T> 是泛型方法;没有的,称为泛型类中的成员方法。

类型参数的限定

如果限制只有特定某些类可以传入T参数,那么可以对T进行限定,如:只有实现了特定接口的类:<T extends Comparable>,表示的是Comparable及其子类型。

为什么是extends不是 implements,或者其他限定符?

严格来讲,该表达式意味着:`T subtypeOf Comparable`,jdk不希望再引入一个新的关键词;

其次,T既可以是类对象也可以是接口,如果是类对象应该是`implements`,而如果是接口,则应该是`extends`;从子类型上来讲,extends更接近要表达的意思。

好吧,这是一个约定。

限定符可以指定多个类型参数,分隔符是 &,不是逗号,因为在类型参数定义中,逗号已经作为多个类型参数的分隔符了,如:<T,S extends Comparable & Serializable>

泛型限定的优点:

限制某些类型的子类型可以传入,在一定程度上保证类型安全;

可以使用限定类型的方法。如:

public class Parent<T>{
    private T name;

    public T getName() {
        return name;
    }

    public void setName(T name) {
        //这里只能使用name自object继承的方法
        this.name = name;
    }
}

加上限定符,就可以访问限定类型的方法了,类型更明确。

public class Parent<T extends List<T>>{
    private T name;

    public T getName() {
        return name;
    }

    public void setName(T name) {
        //这里可以访问List的方法,如name.size()
        this.name = name;
    }
}

注:

我们知道final类不可继承,在继承机制上class SomeString extends String是错误的,但泛型限定符使用时是可以的:<T extends String>,只是会给一个警告。

后面的通配符限定有一个super关键字,这里没有。

泛型擦除

泛型只在编译阶段有效,编译后类型被擦除了,也就是说jvm中没有泛型对象,只有普通对象。所以完全可以把代码编译为jdk1.0可以运行的字节码。

擦除的方式

定义部分,即尖括号中间的部分直接擦除。

public class GenericClass<T extends Comparable>{}

擦除后:

public class GenericClass{}

引用部分如:

public T field1;

其中的T被替换成对应的限定类型,擦除后:

public Comparable field1;

如果没有限定类型:

public class GenericClass<T>{
  public T field1;
}

那么的替换为object,即:

public class GenericClass{
  public Object field1;
}

有多个限定符的,替换为第一个限定类型名。如果引用了第二个限定符的类对象,编译器会在必要的时候进行强制类型转换。

public class GenericClass<T extends Comparable & Serializable>{
  public T field1;
}

类擦除后变为:

public class GenericClass{
  public Comparable field1;
}

而表达式返回值返回时,泛型的编译器自动插入强制类型转换。

泛型擦除的残留

反编译GenericClass:

Compiled from "GenericClass.java"
public class com.pollyduan.generic.GenericClass<T> {
  public T field1;
  public com.pollyduan.generic.GenericClass();
}

好像前面说的不对啊,这还是T啊,没有擦除呀?

这就是擦除的残留。反汇编:

{
public T field1;
  descriptor: Ljava/lang/Object;
  flags: ACC_PUBLIC
  Signature: #8 // TT;

public com.pollyduan.generic.GenericClass();
  descriptor: ()V
  flags: ACC_PUBLIC
  Code:
    stack=1, locals=1, args_size=1
       0: aload_0
       1: invokespecial #12                 // Method java/lang/Object."<init>":()V
       4: return
    LineNumberTable:
      line 2: 0
    LocalVariableTable:
      Start  Length  Slot  Name   Signature
          0       5     0  this   Lcom/pollyduan/generic/GenericClass;
    LocalVariableTypeTable:
      Start  Length  Slot  Name   Signature
          0       5     0  this   Lcom/pollyduan/generic/GenericClass<TT;>;
}
SourceFile: "GenericClass.java"
Signature: #22 // <T:Ljava/lang/Object;>Ljava/lang/Object;

其中:

descriptor:对方法参数和返回值进行描述;
signature:泛型类中独有的标记,普通类中没有,JDK5才加入,标记了定义时的成员签名,包括定义时的泛型参数列表,参数类型,返回值等;

可以看到public T field1;是签名,还保留了定义的格式;其对应的参数类型是Ljava/lang/Object;

最后一行是类的签名,可以看到T后面有跟了擦除后的参数类型:<T:Ljava/lang/Object;>

这样的机制,对于分析字节码是有意义的。

泛型的约束和限制

不能使用8个基本类型实例化类型参数

原因在于类型擦除,Object不能存储基本类型:

byte,char,short,int,long,float,double,boolean

从包装类角度来看,或者说三个:
Number(byte,short,int,long,float,double),char,boolean

类型检查不可使用泛型

if(aaa instanceof Pair<String>){}//error

Pair<String> p = (Pair<String>) a;//warn

Pair<String> p;
Pair<Integer> i;
i.getClass()==p.getClass();//true

不能创建泛型对象数组

GenericMethod<User>[] o=null;//ok
o=new GenericMethod<User>[10];//error

可以定义泛型类对象的数组变量,不能创建及初始化。

注,可以创建通配类型数组,然后进行强制类型转换。不过这是类型不安全的。

o=(GenericMethod<User>[]) new GenericMethod<?>[10];

不可以创建的原因是:因为类型擦除的原因无法在为元素赋值时类型检查,因此jdk强制不允许。

有一个特例是方法的可变参数,虽然本质上是数组,却可以使用泛型。

安全的方法是使用List。

Varargs警告

java不支持泛型类型的对象数组,可变参数是可以的。它也正是利用了强制类型转换,因此同样是类型不安全的。所以这种代码编译器会给一个警告。

public static <T> T getMiddle(T... a){
  return a[a.length/2];
}

去除警告有两种途径:一种是在定义可变参数方法上(本例中的getMiddle())加上@SafeVarargs注解,另一种是在调用该方法时添加@SuppressWarnings("unchecked")注解。

不能实例化泛型对象

T t= new T();//error
T.class.newInstance();//error
T.class;//error

解决办法是传入Class<T> t参数,调用t.newInstance()

public void sayHi(Class<T> c){
  T t=null;
  try {
    t=c.newInstance();
  } catch (Exception e) {
    e.printStackTrace();
  }
  System.out.println("Hi "+t);
}

不能在泛型类的静态域中使用泛型类型

public class Singleton<T>{
    private static T singleton; //error
    public static T getInstance(){} //error
    public static void print(T t){} //error
}

但是,静态的泛型方法可以使用泛型类型:

public static <T> T getInstance(){return null;} //ok
public static <T> void print(T t){} //ok

这个原因很多资料中都没说的太明白,说一下个人理解,仅供参考:

1. 泛型类中,<T>称为类型变量,实际上就相当于在类中隐形的定义了一个不可见的成员变量:`private T t;`,这是对象级别的,对于泛型类型变量来说是在对象初始化时才知道其具体类型的。而在静态域中,不需要对象初始化就可以调用,这是矛盾的。

2. 静态的泛型方法,是在方法层面定义的,就是说在调用方法时,T所指的具体类型已经明确了。

不能捕获泛型类型的对象

Throwable类不可以被继承,自然也不可能被catch

public class GenericThrowable<T> extends Throwable{
  //The generic class GenericThrowable<T> may not subclass java.lang.Throwable
}

但由于Throwable可以用在泛型类型参数中,因此可以变相的捕获泛型的Throwable对象。

@Test
public void testGenericThrowable(){
  GenericThrowable<RuntimeException> obj=new GenericThrowable<RuntimeException>();
  obj.doWork(new RuntimeException("why?"));
}

public static class GenericThrowable<T extends Throwable>{
  public void doWork(T t) throws T{
    try{
      int i=3/0;
    }catch(Throwable cause){
      t.initCause(cause);
      throw t;
    }
  }
}

这个能干什么?

@Test
public void testGenericThrowable(){
  GenericThrowable<RuntimeException> obj=new GenericThrowable<RuntimeException>();
  obj.doWork(new RuntimeException("What did you do?"));
}
public static class GenericThrowable<T extends Throwable>{
  public void doWork(T t) throws T{
    try{
      Reader reader=new FileReader("notfound.txt");
      //这里应该是checked异常
    }catch(Throwable cause){
      t.initCause(cause);
      throw t;
    }
  }
}

FileReader实例化可能抛出已检查异常,jdk中要求必须捕获或者抛出已检查异常。这种模式把它给隐藏了。也就是说可以消除已检查异常,有点不地道,颠覆了java异常处理的认知,后果不可预料,慎用。

擦除的冲突

重载与重写

定义一个普通的父类:

package com.pollyduan.generic;

public class Parent{

    public void setName(Object name) {
        System.out.println("Parent:" + name);
    }
}

那么继承一个子类,Son.java

package com.pollyduan.generic;

public class Son extends Parent {
    public void setName(String name) {
        System.out.println("son:" + name);
    }

    public static void main(String[] args) {
        Son son=new Son();
        son.setName("abc");
        son.setName(new Object());
    }
}

Son类重载了一个setName(String)方法,这没问题。输出:

son:abc
Parent:java.lang.Object@6d06d69c

Parent修改泛型类:

package com.pollyduan.generic;

public class Parent<T>{

    public void setName(T name) {
        System.out.println("Parent:" + name);
    }
}

从擦除的机制得知,擦除后的class文件为:

package com.pollyduan.generic;

public class Parent{

    public void setName(Object name) {
        System.out.println("Parent:" + name);
    }
}

这和最初的非泛型类是一样的,那么Son类修改为:

package com.pollyduan.generic;

public class Son extends Parent<String>  {
    public void setName(String name) {
        System.out.println("son:" + name);
    }

    public static void main(String[] args) {
        Son son=new Son();
        son.setName("abc");
        son.setName(new Object());//The method setName(String) in the type Son is not applicable for the arguments (Object)
    }
}

发现重载无效了。这是泛型擦除造成的,无论是否在setName(String)是否标注为@Override都将是重写,都不是重载。而且,即便你不写setName(String)方法,编译器已经默认重写了这个方法。

换一个角度来考虑,定义Son时,Parent已经明确了类型参数为String,那么再写setName(Stirng)是重写,也是合理的。

package com.pollyduan.generic;

public class Son extends Parent<String>  {

    public static void main(String[] args) {
        Son son=new Son();
        son.setName("abc");//ok
    }
}

反编译会发现,编译器在内部编译了两个方法:

  public void setName(java.lang.String);
  public void setName(java.lang.Object);

setName(java.lang.Object) 虽然是public但编码时会发现不可见,它称为”桥方法”,它会重写父类的方法。

Son son=new Son();
Parent p=son;
p.setName(new Object());

强行调用会转换异常,也就证明了它实际上调用的是son的setName(String)。

我非要重载怎么办?只能曲线救国,改个名字吧。

public void setName2(String name) {
        System.out.println("son:" + name);
    }

继承泛型的参数化

一个泛型类的类型参数不同,称之为泛型的不同参数化。

泛型有一个原则:一个类或类型变量不可成为两个不同参数化的接口类型的子类型。如:

package com.pollyduan.generic;

import java.util.Comparator;

public class Parent implements Comparator{

    @Override
    public int compare(Object o1, Object o2) {
        return 0;
    }
}

public class Son extends Parent  implements Comparator   {
}

这样是没有问题的。如果增加了泛型参数化:

package com.pollyduan.generic;

import java.util.Comparator;

public class Parent implements Comparator<Parent>{

    @Override
    public int compare(Parent o1, Parent o2) {
        return 0;
    }
}

package com.pollyduan.generic;

import java.util.ArrayList;
import java.util.Comparator;

public class Son extends Parent  implements Comparator<Son>   {
  //The interface Comparator cannot be implemented more than once with different arguments
}

原因是Son实现了两次Comparator,擦除后均为Comparator,造成了冲突。

通配符类型

通配符是在泛型类使用时的一种机制,不能用在泛型定义时的泛型表达式中(这是泛型类型参数限定符)。

子类型通配符

如果P是S的超类,那么 Pair<S>就是Pair<? extends P>的子类型,通配符就是为了解决这个问题的。

这称为子类型限定通配符,又称上边界通配符(upper bound wildcard Generics),代表继承它的所有子类型,通配符匹配的类型不允许作为参数传入,只能作为返回值。

public static void test1() {
  Parent<Integer> bean1 = new Parent<Integer>();
  bean1.setName(123);

  Parent<? extends Number> bean2 = bean1;
  Integer i = 100;
  bean2.setName(i);// 编译错误
  Number s = bean2.getName();
  System.out.println(s);
}

getName()的合理性:

无论bean2指向的是任何类型的对象,只要是Number的子类型,都可以用Number类型变量接收。

为什么setName(str)会抛出异常呢?

1. <? extends Number> 表明了入参是Number的子类型;
2. 那么bean2 可以指向Parent<Integer>,也可以指向Parent<Double>,这都是符合规则的;
3. 再看setName(<? extends Number>),逻辑上传入Integer或者Double对象都是符合逻辑的;
4. 如果bean2指向的是Parent<Integer>,而传入的对象是Double的,两个看似合理的规则到一起就不行了。
5. 因此,jdk无法保证类型的安全性,干脆不允许这样——不允许泛型的子类型通配类型作为入参。

超类型通配符

与之对应的是超类型 Pair

public static void test2() {    public static void test2() {
        Parent<Number> bean1 = new Parent<Number>();
        bean1.setName(123);

        Parent<? super Integer> bean2 = bean1;
        Integer i = 100;
        bean2.setName(i);
        Integer s = bean2.getName();// 编译错误
        Object o = bean2.getName();// ok
        System.out.println(o);
    }
}

setName的可行性:

1. 无论bean2指向Parent<Number>Parent<Integer>还是Parent<Object>都是允许的;
2. 都可以传入IntegerInteger的子类型。

getName为毛报错?

1. 由于限定类型的超类可能有很多,getName返回类型不可预知,如Integer 或其父类型Number/OtherParentClass...都无法保证类型检查的安全。

2. 但是由于Java的所有对象的顶级祖先类都是Object,因此可以用Object获取getName返回值。

无限定通配符

Pair<?> 就是 Pair<? extends Object>

因此,无限定通配符可以作为返回值,不可做入参。

返回值只能保存在Object中。

P<?> 和P

Pair可以调用setter方法,这是它和Pair<?>最重要的区别。

P<?> 不等于 P<Object>

P<Object>P<?>的子类。

类型通配符小结

1. 限定通配符总是包括自己;
2. 子类型通配符:set方法受限,只可读,不可写;
3. 超类型通配符:get方法受限,不可读(Object除外),只可写;
4. 无限定通配符,只可读不可写;
5. 如果你既想存,又想取,那就别用通配符;
6. 不可同时声明子类型和超类型限定符,即extends和super只能出现一个。

通配符的受限只针对setter(T)T getter(),如果定义了一个setter(Integer)这种具体类型参数的方法,无限制。如:如果增加一个方法setId(Integer id),可以任意调用。

通配符捕获

通配符限定类中可以使用T,编译器适配类型。

有一个键值对的泛型类:

@Data
class Pair<T> {
    private T key;
    private T value;
}

使用通配类型创建一个swap方法交换key-value,交换时需要先使用一个临时变量保存一个字段:

public static void swap(Pair<?> p){
//      ? k=p.getKey();//error,?不可作为具体类型限定符
  Object k=p.getKey();//好吧,换成object,ok
  p.setKey(p.getValue());//but,通配符类型不可做入参
  p.setValue(k);
}

这里有一个办法解决它,再封装一个swapHelper():

private static <T> void swapHelper(Pair<T> p){
  T k=p.getKey();
  p.setKey(p.getValue());
  p.setValue(k);
}
public static void swap(Pair<?> p){
  swapHelper(p);
}

这种方式,称为:通配符捕获,用一个Pair<T> 来捕获 Pair<?>中的类型。

注:

当然,你完全可以直接使用swapHelper,这里只是为了说明这样一种捕获机制。

只允许捕获单个、确定的类型,如:ArrayList<Pair<?>> 是无法使用 ArrayList<Pair<T>> 捕获的。

泛型与继承

继承的原则

继承泛型类时,必须对父类中的类型参数进行初始化。或者说父类中的泛型参数必须在子类中可以确定具体类型。

例如:有一个泛型类Parent<T>,那么Son类定义时有两种方式初始化父类型的类型参数:

1 用具体类型初始化:

public class Son extends Parent<String>{}

2 用子类中的泛型类型初始化父类:

public class Son<T> extends Parent<T>{}

Pair<P>Pair<S>

无论P和S有什么继承关系,一般Pair<P>Pair<S>没什么关系。

Pair<Son> s=new Pair<>();
Pair<Parent> p=s;//error

Parent<T>Son<T>

泛型类自身可以继承其他类或实现接口,如 List实现ArrayList

泛型类可以扩展泛型类或接口,如ArrayList 实现了 List,此时ArrayList可以转换为List。这是安全的。

Parent<T>Parent

Parent<T>随时都可以转换为原生类型Parent,但需要注意类型检查的安全性。

package com.pollyduan.generic;

import java.io.File;

class Parent<T> {  
    private T name;  
    public T getName() {  
        return name;  
    }  
    public void setName(T name) {  
        this.name = name;  
    }  

    public static void main(String[] args) {
        Parent<String> p1=new Parent<>();
        p1.setName("tom");
        System.out.println(p1.getName());
        Parent p2=p1;
        p2.setName(new File("1.txt"));
        System.out.println(p2.getName());
    }
}  

运行没有异常,注意。

Person<? extends XXX>

严格讲通配符限定的泛型对象不属于继承范畴,但使用中有类似继承的行为。

SonParent的子类型,那么Person<? extends Son>就是Person<? extends Parent> 的子类型。

Person<? extends Object> 等同于 Person<?>,那么基于上以规则可以推断:Person<? extends Parent>Person<?> 的子类型。

Person<Object>Person<?> 的子类型。

泛型与反射

泛型相关的反射

有了泛型机制,jdk的reflect包中增加了几个泛型有关的类:

Class<T>.getGenericSuperclass()

获取泛型超类

ParameterizedType

类型参数实体类

实例

User.java

package com.pollyduan.generic;

@Data
public class User {
    private Integer id;
    private String name;
}

AbstractBaseDaoImpl.java

package com.pollyduan.generic;

public abstract class AbstractBaseDaoImpl<T> {
    public AbstractBaseDaoImpl() {
        Type t = getClass().getGenericSuperclass();
        System.out.println(t);
    }
}

UserDaoImpl.java

package com.pollyduan.generic;

public class UserDaoImpl extends AbstractBaseDaoImpl<User> {
    public static void main(String[] args) {
        UserDaoImpl userDao=new UserDaoImpl();
    }
}

运行UserDaoImpl.main(),输出:

com.pollyduan.generic.AbstractBaseDaoImpl<com.pollyduan.generic.User>

可以看到,在抽象类AbstractBaseDaoImpl中可以拿到泛型类的具体类。

从这一机制,可以通过AbstractBaseDaoImpl实现通用的JDBA DAO。

完善AbstractBaseDaoImpl.java

package com.pollyduan.generic;

import java.lang.reflect.Field;
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import java.util.Arrays;
import java.util.HashMap;
import java.util.Map;
import java.util.stream.Collectors;

public abstract class AbstractBaseDaoImpl<T, K> {
    private Class<T> entityClass;
    private Class<T> primaryKeyClass;

    public AbstractBaseDaoImpl() {
        Type t = getClass().getGenericSuperclass();
        ParameterizedType pt = (ParameterizedType) t;
        Type[] typeParameters = pt.getActualTypeArguments();
        entityClass = (Class<T>) typeParameters[0];
        primaryKeyClass = (Class<T>) typeParameters[1];
    }

    public void save(T t) {
        StringBuilder sb = new StringBuilder("INSERT INTO ");
        sb.append(entityClass.getSimpleName());

        sb.append("(");
        Field[] fields = entityClass.getDeclaredFields();
        String fieldNames = Arrays.asList(fields).stream().map(x -> x.getName()).collect(Collectors.joining(","));
        sb.append(fieldNames);
        sb.append(") VALUES(");
        sb.append(fieldNames.replaceAll("[^,]+", "?"));
        sb.append(")");

        System.out.println(sb.toString());
    //根据反射还要遍历fields处理变量绑定,略。
    }

    public void delete(K k) {
        StringBuilder sb = new StringBuilder("DELETE FROM ");
        sb.append(entityClass.getSimpleName());
        sb.append(" WHERE ID=?");// 这里默认主键名为id,应该配合注解动态获取主键名
        System.out.println(sb.toString());
    }

    public void update(T t) {
        StringBuilder sb = new StringBuilder("UPDATE ");
        sb.append(entityClass.getSimpleName());
        sb.append(" SET ");
        Field[] fields = entityClass.getDeclaredFields();
        for (int i = 0; i < fields.length; i++) {
            if (fields[i].getName().toLowerCase().equals("id")) {
                continue;
            }
            sb.append(fields[i].getName());
            sb.append("=?");
            if (i < fields.length - 1) {
                sb.append(",");
            }
        }
        sb.append(" WHERE ID=?");
        System.out.println(sb.toString());
    }

    public T get() throws Exception {
        T t = null;
        // 模拟resultset
        Map<String, Object> rs = new HashMap<>();
        t = entityClass.newInstance();
        Field[] fields = entityClass.getDeclaredFields();
        for (Field field : fields) {
            field.setAccessible(true);
            field.set(t, rs.get(field.getName()));
        }
        return t;
    }
  public static void main(String[] args) {
    UserDaoImpl userDao=new UserDaoImpl();
    User user1=new User();
    userDao.save(user1);
    userDao.delete(1);
    userDao.update(user1);
    try {
      User user2=userDao.get();
      System.out.println(user2);
    } catch (Exception e) {
      e.printStackTrace();
    }
  }
}

有现成的ORM框架可用,这里就意思意思得了。输出:

INSERT INTO User(id,name) VALUES(?,?)
DELETE FROM User WHERE ID=?
UPDATE User SET name=? WHERE ID=?
User(id=1, name=Peter)

有问题可加Q群讨论:9040323

目录
相关文章
|
7天前
|
JavaScript Java 编译器
Java包装类和泛型的知识点详解
Java包装类和泛型的知识点的深度理解
|
28天前
|
Java
java中的泛型类型擦除
java中的泛型类型擦除
13 2
|
1月前
|
存储 Java fastjson
Java泛型-4(类型擦除后如何获取泛型参数)
Java泛型-4(类型擦除后如何获取泛型参数)
32 1
|
6天前
|
存储 监控 安全
泛型魔法:解码Java中的类型参数
泛型魔法:解码Java中的类型参数
26 0
泛型魔法:解码Java中的类型参数
|
8天前
|
Java API
Java基础—笔记—内部类、枚举、泛型篇
本文介绍了Java编程中的内部类、枚举和泛型概念。匿名内部类用于简化类的创建,常作为方法参数,其原理是生成一个隐含的子类。枚举用于表示有限的固定数量的值,常用于系统配置或switch语句中。泛型则用来在编译时增强类型安全性,接收特定数据类型,包括泛型类、泛型接口和泛型方法。
9 0
|
1月前
|
存储 安全 Java
JAVA泛型
JAVA泛型
11 0
|
1月前
|
Java 编译器
[java进阶]——泛型类、泛型方法、泛型接口、泛型的通配符
[java进阶]——泛型类、泛型方法、泛型接口、泛型的通配符
|
1月前
|
存储 Java 编译器
Java——泛型
Java——泛型
15 0
|
1月前
|
存储 安全 Java
JAVA的泛型
JAVA的泛型
9 0
|
2月前
|
算法 Java 编译器
重学Java之泛型的基本使用
重学Java之泛型的基本使用