最简单的视音频播放示例3:Direct3D播放YUV,RGB(通过Surface)

简介: 上一篇文章记录了GDI播放视频的技术。打算接下来写两篇文章记录Direct3D(简称D3D)播放视频的技术。Direct3D应该Windows下最常用的播放视频的技术。实际上视频播放只是Direct3D的“副业”,它主要用于3D游戏制作。

上一篇文章记录了GDI播放视频的技术。打算接下来写两篇文章记录Direct3D(简称D3D)播放视频的技术。Direct3D应该Windows下最常用的播放视频的技术。实际上视频播放只是Direct3D的“副业”,它主要用于3D游戏制作。当前主流的游戏几乎都是使用Direct3D制作的,例如《地下城与勇士》,《穿越火线》,《英雄联盟》,《魔兽世界》,《QQ飞车》等等。使用Direct3D可以用两种方式渲染视频:Surface和Texture。使用Surface相对来说比使用Texture要简单一些,但是不如使用Texture灵活。鉴于使用Surface更加容易上手,本文记录使用Direct3D中的Surface显示视频的技术。下一篇文章再记录使用Direct3D中的Texture显示视频的技术。

 

Direct3D简介

下面下简单记录一下背景知识。摘录修改了维基上的一部分内容(维基上这部分叙述貌似很不准确…):

Direct3D(简称:D3D)是微软公司在Microsoft Windows系统上开发的一套3D绘图API,是DirectX的一部份,目前广为各家显示卡所支援。1995年2月,微软收购了英国的Rendermorphics公司,将RealityLab 2.0技术发展成Direct3D标准,并整合到Microsoft Windows中,Direct3D在DirectX 3.0开始出现。后来在DirectX 8.0发表时与DirectDraw编程介面合并并改名为DirectX Graphics。Direct3D与Windows GDI是同层级组件。它可以直接调用底层显卡的功能。与OpenGL同为电脑绘图软件和电脑游戏最常使用的两套绘图API。

抽象概念

Direct3D的抽象概念包括:Devices(设备),Swap Chains(交换链)和Resources(资源)。

Device(设备)用于渲染3D场景。例如单色设备就会渲染黑白图片,而彩色设备则会渲染彩色图片。Device目前我自己了解的有以下2类(还有其他类型,但不是很熟):

HAL(Hardware Abstraction Layer):支持硬件加速的设备。在所有设备中运行速度是最快的,也是最常用的。
Reference:模拟一些硬件还不支持的新功能。换言之,就是利用软件,在CPU对硬件渲染设备的一个模拟。

每一个Device至少要有一个Swap Chain(交换链)。一个Swap Chain由一个或多个Back Buffer Surfaces(后台缓冲表面)组成。渲染在Back Buffer中完成。
此外,Device包含了一系列的Resources(资源),用于定义渲染时候的数据。每个Resources有4个属性:

Type:描述Resource的类型。例如surface, volume, texture, cube texture, volume texture, surface texture, index buffer 或者vertex buffer。
Usage:描述Resource如何被使用。例如指定Resource是以只读方式调用还是以可读写的方式调用。
Format:数据的格式。比如一个二维表面的像素格式。例如,D3DFMT_R8G8B8的Format表明了数据格式是24 bits颜色深度的RGB数据。
Pool:描述Resource如何被管理和存储。默认的情况下Resource会被存储在设备的内存(例如显卡的显存)中。也可以指定Resource存储在系统内存中。

渲染流水线(rendering pipeline)

Direct3D API定义了一组Vertices(顶点), Textures(纹理), Buffers(缓冲区)转换到屏幕上的流程。这样的流程称为Rendering Pipeline(渲染流水线),它的各阶段包括:

Input Assembler(输入组装):从应用程序里读取vertex数据,将其装进流水线。
Vertex Shader(顶点着色器):对每个顶点属性进行着色。每次处理一个顶点,比如变换、贴图、光照等。注意这个地方可能需要自己编程。
Geometry Shader(几何着色器): Shader Model 4.0引进了几何着色器,处理点、线、面的几何坐标变换。此处我自己还不是很了解。

PS:上述处理完后的数据可以理解为以下图片。即包含顶点信息,但不包含颜色信息。

Stream Output(流输出):将Vertex Shader和Geometry Shader处理完成的数据输出给使用者。
Rasterizer(光栅化): 把算完的顶点转成像素,再将像素(pixels)输出给Pixel Shader。这里也可执行其他工作,比如像素数据的切割,插值等。

PS:光栅化的过程可以理解为下图。即把顶点转换成像素。

Pixel Shader(像素着色器):对每个像素进行着色。注意这个地方可能需要自己编程。
Output Merger(输出混合):整合各种不同的数据,输出最后结果。

视频显示的基础知识

在记录Direct3D的视频显示技术之前,首先记录一下视频显示的基础知识。我自己归纳总结了以下几点知识。

1. 三角形

在Direct3D中经常会出现“三角形”这个概念。这是因为在3D图形渲染中,所有的物体都是由三角形构成的。因为一个三角形可以表示一个平面,而3D物体就是由一个或多个平面构成的。比如下图表示了一个非常复杂的3D地形,它们也不过是由许许多多三角形表示的。

因此我们只要指定一个或多个三角形,就可以表示任意3D物体。

2. 后台缓冲表面,前台表面,交换链,离屏表面

后台缓冲表面和前台表面的概念总是同时出现的。简单解释一下它们的作用。当我们进行复杂的绘图操作时,画面可能有明显的闪烁。这是由于绘制的东西没有同时出现在屏幕上而导致的。“前台表面”+“后台缓冲表面”的技术可以解决这个问题。前台表面即我们看到的屏幕,后台缓冲表面则在内存当中,对我们来说是不可见的。每次的所有绘图操作不是在屏幕上直接绘制,而是在后台缓冲表面中进行,当绘制完成后,需要的时候再把绘制的最终结果显示到屏幕上。这样就解决了上述的问题。

实际上,上述技术还涉及到一个“交换链”(Swap Chain)的概念。所谓的“链”,指的是一系列的表面组成的一个合集。这些表面中有一个是前台表面(显示在屏幕上),剩下的都是后台缓冲表面。其实,简单的交换链不需要很多表面,只要两个就可以了(虽然感觉不像“链”)。一个后台缓冲表面,一个前台表面。所谓的“交换”,即是在需要呈现后台缓冲表面中的内容的时候,交换这两个表面的“地位”。即前台表面变成后台缓冲表面,后台缓冲表面变成前台表面。如此一来,后台缓冲表面的内容就呈现在屏幕上了。原先的前台表面,则扮演起了新的后台缓冲表面的角色,准备进行新的绘图操作。当下一次需要显示画面的时候,这两个表面再次交换,如此循环往复,永不停止。
此外,还有一个离屏表面。离屏表面是永远看不到的表面(所谓“离屏”),它通常被用来存放位图,并对其中的数据做一些处理。本文介绍的例子中就用到了一个离屏表面。通常的做法是把离屏表面上的位图复制到后台缓冲表面,后台缓冲表面再显示到前台表面。

安装DirectX SDK

 

使用Direct3D开发之前需要安装DirectX SDK。安装没有难度,一路“Next”即可。

Microsoft DirectX SDK (June 2010)下载地址:
http://www.microsoft.com/en-us/download/details.aspx?id=6812
使用VC进行开发的时候,需要在项目的“属性”对话框中配置头文件和库:
头文件配置:C/C++->常规->附加包含目录
库文件配置:
(a)链接器->常规->附加库目录。
(b)链接器->输入->附加依赖项(填写一个d3d9.lib)
编程的时候,添加头文件后即可使用:

 

[cpp]  view plain copy 在CODE上查看代码片 派生到我的代码片
 
  1. #include <d3d9.h>  

 

D3D视频显示的流程

有关Direct3D的知识的介绍还有很多,在这里就不再记录了。正如那句俗话:“Talk is cheap, show me the code.”,光说理论还是会给人一种没有“脚踏实地”的感觉,下文将会结合代码记录Direct3D中使用Surface渲染视频的技术。

使用Direct3D的Surface播放视频一般情况下需要如下步骤:

1. 创建一个窗口(不属于D3D的API)
2. 初始化

1) 创建一个Device 
2) 基于Device创建一个Surface(离屏表面)

3. 循环显示画面

1) 清理
2) 一帧视频数据拷贝至Surface
3) 开始一个Scene
4) Surface数据拷贝至后台缓冲表面
5) 结束Scene
6) 显示(后台缓冲表面->前台表面)

下面结合Direct3D播放YUV/RGB的示例代码,详细分析一下上文的流程。

1. 创建一个窗口(不属于D3D的API)

建立一个Win32的窗口程序,就可以用于Direct3D的显示。程序的入口函数是WinMain(),调用CreateWindow()即可创建一个窗口。这一步是必须的,不然Direct3D绘制的内容就没有地方显示了。此处不再详述。

2. 初始化

1) 创建一个Device

这一步完成的时候,可以得到一个IDirect3DDevice9接口的指针。创建一个Device又可以分成以下几个详细的步骤:
(a) 通过 Direct3DCreate9()创建一个IDirect3D9接口。
获取IDirect3D9接口的关键实现代码只有一行:

[cpp]  view plain copy 在CODE上查看代码片 派生到我的代码片
 
  1. IDirect3D9 *m_pDirect3D9 = Direct3DCreate9( D3D_SDK_VERSION );  

 

IDirect3D9接口是一个代表我们显示3D图形的物理设备的C++对象。它可以用于获得物理设备的信息和创建一个IDirect3DDevice9接口。例如,可以通过它的GetAdapterDisplayMode()函数获取当前主显卡输出的分辨率,刷新频率等参数,实现代码如下。

[cpp]  view plain copy 在CODE上查看代码片 派生到我的代码片
 
  1. D3DDISPLAYMODE d3dDisplayMode;  
  2. lRet = m_pDirect3D9->GetAdapterDisplayMode( D3DADAPTER_DEFAULT, &d3dDisplayMode );  


由代码可以看出,获取的信息存储在D3DDISPLAYMODE结构体中。D3DDISPLAYMODE结构体中包含了主显卡的分辨率等信息:

[cpp]  view plain copy 在CODE上查看代码片 派生到我的代码片
 
  1. /* Display Modes */  
  2. typedef struct _D3DDISPLAYMODE  
  3. {  
  4.     UINT            Width;  
  5.     UINT            Height;  
  6.     UINT            RefreshRate;  
  7.     D3DFORMAT       Format;  
  8. } D3DDISPLAYMODE;  



也可以用它的GetDeviceCaps()函数搞清楚主显卡是否支持硬件顶点处理,实现的代码如下。

[cpp]  view plain copy 在CODE上查看代码片 派生到我的代码片
 
  1. D3DCAPS9 d3dcaps;  
  2. lRet=m_pDirect3D9->GetDeviceCaps(D3DADAPTER_DEFAULT,D3DDEVTYPE_HAL,&d3dcaps);  
  3. int hal_vp = 0;  
  4. if( d3dcaps.DevCaps & D3DDEVCAPS_HWTRANSFORMANDLIGHT ){  
  5.     // yes, save in ‘vp’ the fact that hardware vertex  
  6.     // processing is supported.  
  7.     hal_vp = D3DCREATE_HARDWARE_VERTEXPROCESSING;  
  8. }  



由代码可以看出,获取的设备信息存储在D3DCAPS9结构体中。D3DCAPS9定义比较长包含了各种各样的信息,不再列出来。从该结构体的DevCaps字段可以判断得出该设备是否支持硬件顶点处理。
(b) 设置D3DPRESENT_PARAMETERS结构体,为创建Device做准备。
接下来填充一个D3DPRESENT_PARAMETERS结构的实例。这个结构用于设定我们将要创建的IDirect3DDevice9对象的一些特性,它的定义如下。

[cpp]  view plain copy 在CODE上查看代码片 派生到我的代码片
 
  1. typedef struct _D3DPRESENT_PARAMETERS_  
  2. {  
  3.     UINT                BackBufferWidth;  
  4.     UINT                BackBufferHeight;  
  5.     D3DFORMAT           BackBufferFormat;  
  6.     UINT                BackBufferCount;  
  7.   
  8.   
  9.     D3DMULTISAMPLE_TYPE MultiSampleType;  
  10.     DWORD               MultiSampleQuality;  
  11.   
  12.   
  13.     D3DSWAPEFFECT       SwapEffect;  
  14.     HWND                hDeviceWindow;  
  15.     BOOL                Windowed;  
  16.     BOOL                EnableAutoDepthStencil;  
  17.     D3DFORMAT           AutoDepthStencilFormat;  
  18.     DWORD               Flags;  
  19.   
  20.   
  21.     /* FullScreen_RefreshRateInHz must be zero for Windowed mode */  
  22.     UINT                FullScreen_RefreshRateInHz;  
  23.     UINT                PresentationInterval;  
  24. } D3DPRESENT_PARAMETERS;  


D3DPRESENT_PARAMETERS这个结构体比较重要。详细列一下它每个参数的含义:
BackBufferWidth:后台缓冲表面的宽度(以像素为单位)。
BackBufferHeight:后台缓冲表面的高度(以像素为单位)。
BackBufferFormat:后台缓冲表面的像素格式(例如:32位像素格式为D3DFMT:A8R8G8B8)。
BackBufferCount:后台缓冲表面的数量,通常设为“1”,即只有一个后备表面。
MultiSampleType:全屏抗锯齿的类型,显示视频没用到,不详细分析。
MultiSampleQuality:全屏抗锯齿的质量等级,显示视频没用到,不详细分析。
SwapEffect:指定表面在交换链中是如何被交换的。支持以下取值:
*D3DSWAPEFFECT_DISCARD:后台缓冲表面区的东西被复制到屏幕上后,后台缓冲表面区的东西就没有什么用了,可以丢弃了。
*D3DSWAPEFFECT_FLIP: 后台缓冲表面拷贝到前台表面,保持后台缓冲表面内容不变。当后台缓冲表面大于1个时使用。
*D3DSWAPEFFECT_COPY: 同上。当后台缓冲表面等于1个时使用。
一般使用D3DSWAPEFFECT_DISCARD。
hDeviceWindow:与设备相关的窗口句柄,你想在哪个窗口绘制就写那个窗口的句柄
Windowed:BOOL型,设为true则为窗口模式,false则为全屏模式
EnableAutoDepthStencil:设为true,D3D将自动创建深度/模版缓冲。
AutoDepthStencilFormat:深度/模版缓冲的格式
Flags:一些附加特性
FullScreen_RefreshRateInHz:刷新率,设定D3DPRESENT_RATE_DEFAULT使用默认刷新率
PresentationInterval:设置刷新的间隔,可以用以下方式:
*D3DPRENSENT_INTERVAL_DEFAULT,则说明在显示一个渲染画面的时候必要等候显示器刷新完一次屏幕。例如显示器刷新率设为80Hz的话,则一秒最多可以显示80个渲染画面。
*D3DPRENSENT_INTERVAL_IMMEDIATE:表示可以以实时的方式来显示渲染画面。
下面列出使用Direct3D播放视频的时候D3DPRESENT_PARAMETERS的一个最简单的设置。

[cpp]  view plain copy 在CODE上查看代码片 派生到我的代码片
 
  1. //D3DPRESENT_PARAMETERS Describes the presentation parameters.  
  2. D3DPRESENT_PARAMETERS d3dpp;   
  3. ZeroMemory( &d3dpp, sizeof(d3dpp) );  
  4. d3dpp.Windowed = TRUE;  
  5. d3dpp.SwapEffect = D3DSWAPEFFECT_DISCARD;  
  6. d3dpp.BackBufferFormat = D3DFMT_UNKNOWN;  

 

(c) 通过IDirect3D9的CreateDevice ()创建一个Device。

最后就可以调用IDirect3D9的CreateDevice()方法创建Device了。

CreateDevice()的函数原型如下:

 

[cpp]  view plain copy 在CODE上查看代码片 派生到我的代码片
 
  1. HRESULT CreateDevice(  
  2. UINT Adapter,  
  3. D3DDEVTYPE DeviceType,  
  4. HWND hFocusWindow,  
  5. DWORD BehaviorFlags,  
  6. D3DPRESENT_PARAMETERS *pPresentationParameters,  
  7. IDirect3DDevice9** ppReturnedDeviceInterface  
  8. );  


其中每个参数的含义如下所列:

 

Adapter:指定对象要表示的物理显示设备。D3DADAPTER_DEFAULT始终是主要的显示器适配器。

DeviceType:设备类型,包括D3DDEVTYPE_HAL(Hardware Accelerator,硬件加速)、D3DDEVTYPE_SW(SoftWare,软件)。
hFocusWindow:同我们在前面d3dpp.hDeviceWindow的相同
BehaviorFlags:设定为D3DCREATE_SOFTWARE_VERTEXPROCESSING(软件顶点处理)或者D3DCREATE_HARDWARE_VERTEXPROCESSING(硬件顶点处理),使用前应该用D3DCAPS9来检测用户计算机是否支持硬件顶点处理功能。
pPresentationParameters:指定一个已经初始化好的D3DPRESENT_PARAMETERS实例
ppReturnedDeviceInterface:返回创建的Device


下面列出使用Direct3D播放视频的时候CreateDevice()的一个典型的代码。

 

[cpp]  view plain copy 在CODE上查看代码片 派生到我的代码片
 
  1. IDirect3DDevice9 *m_pDirect3DDevice;  
  2. D3DPRESENT_PARAMETERS d3dpp;  
  3. …  
  4. m_pDirect3D9->CreateDevice( D3DADAPTER_DEFAULT, D3DDEVTYPE_HAL,hwnd,  
  5.         D3DCREATE_SOFTWARE_VERTEXPROCESSING,  
  6.         &d3dpp, &m_pDirect3DDevice );  

 

 

2) 基于Device创建一个Surface

通过IDirect3DDevice9接口的CreateOffscreenPlainSurface ()方法即可创建一个Surface(离屏表面。所谓的“离屏”指的是永远不在屏幕上显示)。CreateOffscreenPlainSurface ()的函数原型如下所示:

 

[cpp]  view plain copy 在CODE上查看代码片 派生到我的代码片
 
  1. HRESULT CreateOffscreenPlainSurface(UINT width,  
  2.  UINT height,  
  3.  D3DFORMAT format,  
  4.  D3DPOOL pool,  
  5.  IDirect3DSurface9 ** result,  
  6.  HANDLE * unused  
  7.  );  


其中每个参数的含义如下所列:

 

Width:离屏表面的宽。
Height:离屏表面的高。
Format:离屏表面的像素格式(例如:32位像素格式为D3DFMT_A8R8G8B8)
Pool:D3DPOOL定义了资源对应的内存类型,例如如下几种类型。
D3D3POOL_DEFAULT: 默认值,表示存在于显卡的显存中。
D3D3POOL_MANAGED:由Direct3D自由调度内存的位置(显存或者缓存中)。
D3DPOOL_SYSTEMMEM: 表示位于内存中。
Result:返回创建的Surface。
Unused:还未研究。

下面给出一个使用Direct3D播放视频的时候CreateTexture()的典型代码。该代码创建了一个像素格式为YV12的离屏表面,存储于显卡的显存中。

 

[cpp]  view plain copy 在CODE上查看代码片 派生到我的代码片
 
  1. IDirect3DDevice9 * m_pDirect3DDevice;  
  2. IDirect3DSurface9 *m_pDirect3DSurfaceRender;  
  3. …  
  4. m_pDirect3DDevice->CreateOffscreenPlainSurface(  
  5.         lWidth,lHeight,  
  6.         (D3DFORMAT)MAKEFOURCC('Y', 'V', '1', '2'),  
  7.         D3DPOOL_DEFAULT,  
  8.         &m_pDirect3DSurfaceRender,  
  9.         NULL);  

 

 

创建Surface完成之后,初始化工作就完成了。

3. 循环显示画面

循环显示画面就是一帧一帧的读取YUV/RGB数据,然后显示在屏幕上的过程,下面详述一下步骤。

1) 清理

在显示之前,通过IDirect3DDevice9接口的Clear()函数可以清理Surface。个人感觉在播放视频的时候用不用这个函数都可以。因为视频本身就是全屏显示的。显示下一帧的时候自然会覆盖前一帧的所有内容。Clear()函数的原型如下所示:

 

[cpp]  view plain copy 在CODE上查看代码片 派生到我的代码片
 
  1. HRESULT Clear(  
  2.  DWORD Count,  
  3.  const D3DRECT *pRects,  
  4.  DWORD Flags,  
  5.  D3DCOLOR Color,  
  6.  float Z,  
  7.  DWORD Stencil  
  8. );  


其中每个参数的含义如下所列:

 

Count:说明你要清空的矩形数目。如果要清空的是整个客户区窗口,则设为0; 
 pRects:这是一个D3DRECT结构体的一个数组,如果count中设为5,则这个数组中就得有5个元素。 
 Flags:一些标记组合。只有三种标记:D3DCLEAR_STENCIL , D3DCLEAR_TARGET , D3DCLEAR_ZBUFFER。 
 Color:清除目标区域所使用的颜色。 
 float:设置Z缓冲的Z初始值。Z缓冲还没研究过。 
 Stencil:这个在播放视频的时候也没有用到。

下面给出一个使用Direct3D播放视频的时候IDirect3DDevice9的Clear()的典型代码。

 

[cpp]  view plain copy 在CODE上查看代码片 派生到我的代码片
 
  1. IDirect3DDevice9 *m_pDirect3DDevice;  
  2. m_pDirect3DDevice->Clear(0, NULL, D3DCLEAR_TARGET, D3DCOLOR_XRGB(0, 0, 255), 1.0f, 0);  


上述代码运行完后,屏幕会变成蓝色(R,G,B取值为0,0,255)。

 



2) 一帧视频数据拷贝至Surface

操作Surface的像素数据,需要使用IDirect3DSurface9的LockRect()和UnlockRect()方法。使用LockRect()锁定纹理上的一块矩形区域,该矩形区域被映射成像素数组。利用函数返回的D3DLOCKED_RECT结构体,可以对数组中的像素进行直接存取。LockRect()函数原型如下。

 

[cpp]  view plain copy 在CODE上查看代码片 派生到我的代码片
 
  1. HRESULT LockRect(  
  2.   D3DLOCKED_RECT *pLockedRect,  
  3.   const RECT *pRect,  
  4.   DWORD Flags  
  5. );  


每个参数的意义如下:

 

pLockedRect: 返回的一个D3DLOCKED_RECT结构体用于描述被锁定的区域。
pRect: 使用一个 RECT结构体指定需要锁定的区域。如果为NULL的话就是整个区域。
Flags: 暂时还没有细研究。

其中D3DLOCKED_RECT结构体定义如下所示。

 

[cpp]  view plain copy 在CODE上查看代码片 派生到我的代码片
 
  1. typedef struct _D3DLOCKED_RECT  
  2. {  
  3.     INT                 Pitch;  
  4.     void*               pBits;  
  5. } D3DLOCKED_RECT;  

 

 

两个参数的意义如下:
Pitch:surface中一行像素的数据量(Bytes)。注意这个的值并不一定等于实际像素数据一行像素的数据量(通常会大一些),它取值一般是4的整数倍。
pBits:指向被锁定的数据。

使用LockRect()函数之后,就可以对其返回的D3DLOCKED_RECT中的数据进行操作了。例如memcpy()等。操作完成后,调用UnlockRect()方法。

下面给出一个使用Direct3D的Surface播放视频的时候IDirect3DSurface9的数据拷贝的典型代码。该代码拷贝了YUV420P的数据至Surface。

[cpp]  view plain copy 在CODE上查看代码片 派生到我的代码片
 
  1. IDirect3DSurface9 *m_pDirect3DSurfaceRender;  
  2. HRESULT lRet;  
  3. ...  
  4. D3DLOCKED_RECT d3d_rect;  
  5. lRet=m_pDirect3DSurfaceRender->LockRect(&d3d_rect,NULL,D3DLOCK_DONOTWAIT);  
  6. if(FAILED(lRet))  
  7.     return -1;  
  8. byte *pSrc = buffer;  
  9. byte * pDest = (BYTE *)d3d_rect.pBits;  
  10. int stride = d3d_rect.Pitch;  
  11. unsigned long i = 0;  
  12.   
  13. //Copy Data (YUV420P)  
  14. for(i = 0;i < pixel_h;i ++){  
  15.     memcpy(pDest + i * stride,pSrc + i * pixel_w, pixel_w);  
  16. }  
  17. for(i = 0;i < pixel_h/2;i ++){  
  18.     memcpy(pDest + stride * pixel_h + i * stride / 2,pSrc + pixel_w * pixel_h + pixel_w * pixel_h / 4 + i * pixel_w / 2, pixel_w / 2);  
  19. }  
  20. for(i = 0;i < pixel_h/2;i ++){  
  21.     memcpy(pDest + stride * pixel_h + stride * pixel_h / 4 + i * stride / 2,pSrc + pixel_w * pixel_h + i * pixel_w / 2, pixel_w / 2);  
  22. }  
  23.   
  24. lRet=m_pDirect3DSurfaceRender->UnlockRect();  


3) 开始一个Scene
使用IDirect3DDevice9接口的BeginScene()开始一个Scene。Direct3D中规定所有绘制方法都必须在BeginScene()和EndScene()之间完成。这个函数没有参数。

4) Surface数据拷贝至后台缓冲表面
使用IDirect3DDevice9接口的GetBackBuffer() 可以获得后台缓冲表面。然后使用StretchRect()方法可以将Surface的数据拷贝至后台缓冲表面中,等待显示。

GetBackBuffer()函数原型如下。

 

[cpp]  view plain copy 在CODE上查看代码片 派生到我的代码片
 
  1. HRESULT GetBackBuffer(  
  2.   UINT  iSwapChain,   
  3.   UINT  BackBuffer,   
  4.   D3DBACKBUFFER_TYPE Type,  
  5.   IDirect3DSurface9 ** ppBackBuffer   
  6. );  


函数中参数含义如下:

 

iSwapChain:指定正在使用的交换链索引。
BackBuffer:后台缓冲表面索引。
Type:后台缓冲表面的类型。

ppBackBuffer:保存后台缓冲表面的LPDIRECT3DSURFACE9对象。

 

StretchRect()可以将一个矩形区域的像素从设备内存的一个Surface转移到另一个Surface上。StretchRect()函数的原型如下。

 

[cpp]  view plain copy 在CODE上查看代码片 派生到我的代码片
 
  1. HRESULT StretchRect(  
  2.   IDirect3DSurface9 * pSourceSurface,  
  3.   CONST RECT * pSourceRect,  
  4.   IDirect3DSurface9 * pDestSurface,  
  5.   CONST RECT * pDestRect,  
  6.   D3DTEXTUREFILTERTYPE Filter  
  7. );  

 

 

函数中参数含义如下:
pSourceSurface:指向源Surface的指针。
pSourceRect:使用一个 RECT结构体指定源Surface需要复制的区域。如果为NULL的话就是整个区域。
pDestSurface:指向目标Surface的指针。
pDestRect:使用一个 RECT结构体指定目标Surface的区域。
Filter:设置图像大小变换的时候的插值方法。例如:
D3DTEXF_POINT:邻域法。质量较差。
D3DTEXF_LINEAR:线性插值,最常用。

下面给出的代码将离屏表面的数据传给了后台缓冲表面。一但传给了后台缓冲表面,就可以用于显示了。

 

[cpp]  view plain copy 在CODE上查看代码片 派生到我的代码片
 
  1. IDirect3DDevice9 *m_pDirect3DDevice;  
  2. IDirect3DSurface9 *m_pDirect3DSurfaceRender;  
  3. IDirect3DSurface9 * pBackBuffer;  
  4.   
  5.   
  6. m_pDirect3DDevice->GetBackBuffer(0,0,D3DBACKBUFFER_TYPE_MONO,&pBackBuffer);  
  7. m_pDirect3DDevice->StretchRect(m_pDirect3DSurfaceRender,NULL,pBackBuffer,&m_rtViewport,D3DTEXF_LINEAR);  

 


5) 结束Scene
EndScene()和BeginScene()是成对出现的,不再解释。
6) 显示

使用IDirect3DDevice9接口的Present ()显示结果。Present ()的原型如下。

 

[cpp]  view plain copy 在CODE上查看代码片 派生到我的代码片
 
  1. HRESULT Present(  
  2.    const RECT *pSourceRect,  
  3.    const RECT *pDestRect,  
  4.    HWND hDestWindowOverride,  
  5.    const RGNDATA *pDirtyRegion  
  6.   );  


几个参数的意义如下:

 

pSourceRect:你想要显示的后台缓冲表面区的一个矩形区域。设为NULL则表示要把整个后台缓冲表面区的内容都显示。 
pDestRect:表示一个显示区域。设为NULL表示整个客户显示区。 
hDestWindowOverride:你可以通过它来把显示的内容显示到不同的窗口去。设为NULL则表示显示到主窗口。 
pDirtyRegion:一般设为NULL

下面给出一个使用Direct3D播放视频的时候IDirect3DDevice9的Present ()的典型代码。从代码可以看出,全部设置为NULL就可以了。

 

[cpp]  view plain copy 在CODE上查看代码片 派生到我的代码片
 
  1. IDirect3DDevice9 *m_pDirect3DDevice;  
  2. …  
  3. m_pDirect3DDevice->Present( NULL, NULL, NULL, NULL );  

 

 

播放视频流程总结

文章至此,使用Direct3D显示YUV/RGB的全部流程就记录完毕了。最后贴一张图总结上述流程。

 

代码

完整的代码如下所示。

[cpp]  view plain copy 在CODE上查看代码片 派生到我的代码片
 
  1. /** 
  2.  * 最简单的Direct3D播放视频的例子(Direct3D播放RGB/YUV)[Surface] 
  3.  * Simplest Video Play Direct3D (Direct3D play RGB/YUV)[Surface] 
  4.  * 
  5.  * 雷霄骅 Lei Xiaohua 
  6.  * leixiaohua1020@126.com 
  7.  * 中国传媒大学/数字电视技术 
  8.  * Communication University of China / Digital TV Technology 
  9.  * http://blog.csdn.net/leixiaohua1020 
  10.  * 
  11.  * 本程序使用Direct3D播放RGB/YUV视频像素数据。使用D3D中的Surface渲染数据。 
  12.  * 使用Surface渲染视频相对于另一种方法(使用Texture)来说,更加简单,适合 
  13.  * 新手学习。 
  14.  * 函数调用步骤如下: 
  15.  * 
  16.  * [初始化] 
  17.  * Direct3DCreate9():获得IDirect3D9 
  18.  * IDirect3D9->CreateDevice():通过IDirect3D9创建Device(设备)。 
  19.  * IDirect3DDevice9->CreateOffscreenPlainSurface():通过Device创建一个Surface(离屏表面)。 
  20.  * 
  21.  * [循环渲染数据] 
  22.  * IDirect3DSurface9->LockRect():锁定离屏表面。 
  23.  * memcpy():填充数据 
  24.  * IDirect3DSurface9->UnLockRect():解锁离屏表面。 
  25.  * IDirect3DDevice9->BeginScene():开始绘制。 
  26.  * IDirect3DDevice9->GetBackBuffer():获得后备缓冲。 
  27.  * IDirect3DDevice9->StretchRect():拷贝Surface数据至后备缓冲。 
  28.  * IDirect3DDevice9->EndScene():结束绘制。 
  29.  * IDirect3DDevice9->Present():显示出来。 
  30.  * 
  31.  * This software play RGB/YUV raw video data using Direct3D. It uses Surface  
  32.  * in D3D to render the pixel data. Compared to another method (use Texture),  
  33.  * it is more simple and suitable for the beginner of Direct3D. 
  34.  * The process is shown as follows: 
  35.  * 
  36.  * [Init] 
  37.  * Direct3DCreate9(): Get IDirect3D9. 
  38.  * IDirect3D9->CreateDevice(): Create a Device. 
  39.  * IDirect3DDevice9->CreateOffscreenPlainSurface(): Create a Offscreen Surface. 
  40.  * 
  41.  * [Loop to Render data] 
  42.  * IDirect3DSurface9->LockRect(): Lock the Offscreen Surface. 
  43.  * memcpy(): Fill pixel data... 
  44.  * IDirect3DSurface9->UnLockRect(): UnLock the Offscreen Surface. 
  45.  * IDirect3DDevice9->BeginScene(): Begin drawing. 
  46.  * IDirect3DDevice9->GetBackBuffer(): Get BackBuffer. 
  47.  * IDirect3DDevice9->StretchRect(): Copy Surface data to BackBuffer. 
  48.  * IDirect3DDevice9->EndScene(): End drawing. 
  49.  * IDirect3DDevice9->Present(): Show on the screen. 
  50.  */  
  51.   
  52. #include <stdio.h>  
  53. #include <tchar.h>  
  54. #include <d3d9.h>  
  55.   
  56. CRITICAL_SECTION  m_critial;  
  57.   
  58. IDirect3D9 *m_pDirect3D9= NULL;  
  59. IDirect3DDevice9 *m_pDirect3DDevice= NULL;  
  60. IDirect3DSurface9 *m_pDirect3DSurfaceRender= NULL;  
  61.   
  62. RECT m_rtViewport;  
  63.   
  64. //set '1' to choose a type of file to play  
  65. //Read BGRA data  
  66. #define LOAD_BGRA    0  
  67. //Read YUV420P data  
  68. #define LOAD_YUV420P 1  
  69.   
  70.   
  71. //Width, Height  
  72. const int screen_w=500,screen_h=500;  
  73. const int pixel_w=320,pixel_h=180;  
  74. FILE *fp=NULL;  
  75.   
  76. //Bit per Pixel  
  77. #if LOAD_BGRA  
  78. const int bpp=32;  
  79. #elif LOAD_YUV420P  
  80. const int bpp=12;  
  81. #endif  
  82.   
  83. unsigned char buffer[pixel_w*pixel_h*bpp/8];  
  84.   
  85.   
  86. void Cleanup()  
  87. {  
  88.     EnterCriticalSection(&m_critial);  
  89.     if(m_pDirect3DSurfaceRender)  
  90.         m_pDirect3DSurfaceRender->Release();  
  91.     if(m_pDirect3DDevice)  
  92.         m_pDirect3DDevice->Release();  
  93.     if(m_pDirect3D9)  
  94.         m_pDirect3D9->Release();  
  95.     LeaveCriticalSection(&m_critial);  
  96. }  
  97.   
  98.   
  99. int InitD3D( HWND hwnd, unsigned long lWidth, unsigned long lHeight )  
  100. {  
  101.     HRESULT lRet;  
  102.     InitializeCriticalSection(&m_critial);  
  103.     Cleanup();  
  104.   
  105.     m_pDirect3D9 = Direct3DCreate9( D3D_SDK_VERSION );  
  106.     if( m_pDirect3D9 == NULL )  
  107.         return -1;  
  108.   
  109.     D3DPRESENT_PARAMETERS d3dpp;   
  110.     ZeroMemory( &d3dpp, sizeof(d3dpp) );  
  111.     d3dpp.Windowed = TRUE;  
  112.     d3dpp.SwapEffect = D3DSWAPEFFECT_DISCARD;  
  113.     d3dpp.BackBufferFormat = D3DFMT_UNKNOWN;  
  114.   
  115.     GetClientRect(hwnd,&m_rtViewport);  
  116.   
  117.     lRet=m_pDirect3D9->CreateDevice( D3DADAPTER_DEFAULT, D3DDEVTYPE_HAL,hwnd,  
  118.         D3DCREATE_SOFTWARE_VERTEXPROCESSING,  
  119.         &d3dpp, &m_pDirect3DDevice );  
  120.     if(FAILED(lRet))  
  121.         return -1;  
  122.   
  123. #if LOAD_BGRA  
  124.     lRet=m_pDirect3DDevice->CreateOffscreenPlainSurface(  
  125.         lWidth,lHeight,  
  126.         D3DFMT_X8R8G8B8,  
  127.         D3DPOOL_DEFAULT,  
  128.         &m_pDirect3DSurfaceRender,  
  129.         NULL);  
  130. #elif LOAD_YUV420P  
  131.     lRet=m_pDirect3DDevice->CreateOffscreenPlainSurface(  
  132.         lWidth,lHeight,  
  133.         (D3DFORMAT)MAKEFOURCC('Y', 'V', '1', '2'),  
  134.         D3DPOOL_DEFAULT,  
  135.         &m_pDirect3DSurfaceRender,  
  136.         NULL);  
  137. #endif  
  138.   
  139.   
  140.     if(FAILED(lRet))  
  141.         return -1;  
  142.   
  143.     return 0;  
  144. }  
  145.   
  146.   
  147. bool Render()  
  148. {  
  149.     HRESULT lRet;  
  150.     //Read Data  
  151.     //RGB  
  152.     if (fread(buffer, 1, pixel_w*pixel_h*bpp/8, fp) != pixel_w*pixel_h*bpp/8){  
  153.         // Loop  
  154.         fseek(fp, 0, SEEK_SET);  
  155.         fread(buffer, 1, pixel_w*pixel_h*bpp/8, fp);  
  156.     }  
  157.       
  158.     if(m_pDirect3DSurfaceRender == NULL)  
  159.         return -1;  
  160.     D3DLOCKED_RECT d3d_rect;  
  161.     lRet=m_pDirect3DSurfaceRender->LockRect(&d3d_rect,NULL,D3DLOCK_DONOTWAIT);  
  162.     if(FAILED(lRet))  
  163.         return -1;  
  164.   
  165.     byte *pSrc = buffer;  
  166.     byte * pDest = (BYTE *)d3d_rect.pBits;  
  167.     int stride = d3d_rect.Pitch;  
  168.     unsigned long i = 0;  
  169.   
  170.     //Copy Data  
  171. #if LOAD_BGRA  
  172.     int pixel_w_size=pixel_w*4;  
  173.     for(i=0; i< pixel_h; i++){  
  174.         memcpy( pDest, pSrc, pixel_w_size );  
  175.         pDest += stride;  
  176.         pSrc += pixel_w_size;  
  177.     }  
  178. #elif LOAD_YUV420P  
  179.     for(i = 0;i < pixel_h;i ++){  
  180.         memcpy(pDest + i * stride,pSrc + i * pixel_w, pixel_w);  
  181.     }  
  182.     for(i = 0;i < pixel_h/2;i ++){  
  183.         memcpy(pDest + stride * pixel_h + i * stride / 2,pSrc + pixel_w * pixel_h + pixel_w * pixel_h / 4 + i * pixel_w / 2, pixel_w / 2);  
  184.     }  
  185.     for(i = 0;i < pixel_h/2;i ++){  
  186.         memcpy(pDest + stride * pixel_h + stride * pixel_h / 4 + i * stride / 2,pSrc + pixel_w * pixel_h + i * pixel_w / 2, pixel_w / 2);  
  187.     }  
  188. #endif  
  189.   
  190.     lRet=m_pDirect3DSurfaceRender->UnlockRect();  
  191.     if(FAILED(lRet))  
  192.         return -1;  
  193.   
  194.     if (m_pDirect3DDevice == NULL)  
  195.         return -1;  
  196.   
  197.     m_pDirect3DDevice->Clear( 0, NULL, D3DCLEAR_TARGET, D3DCOLOR_XRGB(0,0,0), 1.0f, 0 );  
  198.     m_pDirect3DDevice->BeginScene();  
  199.     IDirect3DSurface9 * pBackBuffer = NULL;  
  200.   
  201.     m_pDirect3DDevice->GetBackBuffer(0,0,D3DBACKBUFFER_TYPE_MONO,&pBackBuffer);  
  202.     m_pDirect3DDevice->StretchRect(m_pDirect3DSurfaceRender,NULL,pBackBuffer,&m_rtViewport,D3DTEXF_LINEAR);  
  203.     m_pDirect3DDevice->EndScene();  
  204.     m_pDirect3DDevice->Present( NULL, NULL, NULL, NULL );  
  205.       
  206.   
  207.     return true;  
  208. }  
  209.   
  210.   
  211. LRESULT WINAPI MyWndProc(HWND hwnd, UINT msg, WPARAM wparma, LPARAM lparam)  
  212. {  
  213.     switch(msg){  
  214.     case WM_DESTROY:  
  215.         Cleanup();  
  216.         PostQuitMessage(0);  
  217.         return 0;  
  218.     }  
  219.     return DefWindowProc(hwnd, msg, wparma, lparam);  
  220. }  
  221.   
  222. int WINAPI WinMain( __in HINSTANCE hInstance, __in_opt HINSTANCE hPrevInstance, __in LPSTR lpCmdLine, __in int nShowCmd )  
  223. {  
  224.     WNDCLASSEX wc;  
  225.     ZeroMemory(&wc, sizeof(wc));  
  226.   
  227.     wc.cbSize = sizeof(wc);  
  228.     wc.hbrBackground = (HBRUSH)(COLOR_WINDOW + 1);  
  229.     wc.lpfnWndProc = (WNDPROC)MyWndProc;  
  230.     wc.lpszClassName = L"D3D";  
  231.     wc.style = CS_HREDRAW | CS_VREDRAW;  
  232.   
  233.     RegisterClassEx(&wc);  
  234.   
  235.     HWND hwnd = NULL;  
  236.     hwnd = CreateWindow(L"D3D", L"Simplest Video Play Direct3D (Surface)", WS_OVERLAPPEDWINDOW, 100, 100, 500, 500, NULL, NULL, hInstance, NULL);  
  237.     if (hwnd==NULL){  
  238.         return -1;  
  239.     }  
  240.       
  241.     if(InitD3D( hwnd, pixel_w, pixel_h)==E_FAIL){  
  242.         return -1;  
  243.     }  
  244.   
  245.     ShowWindow(hwnd, nShowCmd);  
  246.     UpdateWindow(hwnd);  
  247.   
  248. #if LOAD_BGRA  
  249.     fp=fopen("../test_bgra_320x180.rgb","rb+");  
  250. #elif LOAD_YUV420P  
  251.     fp=fopen("../test_yuv420p_320x180.yuv","rb+");  
  252. #endif  
  253.     if(fp==NULL){  
  254.         printf("Cannot open this file.\n");  
  255.         return -1;  
  256.     }  
  257.   
  258.     MSG msg;  
  259.     ZeroMemory(&msg, sizeof(msg));  
  260.   
  261.     while (msg.message != WM_QUIT){  
  262.         //PeekMessage, not GetMessage  
  263.         if (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE)){  
  264.             TranslateMessage(&msg);  
  265.             DispatchMessage(&msg);  
  266.         }  
  267.         else{  
  268.             Sleep(40);  
  269.             Render();  
  270.         }  
  271.     }  
  272.   
  273.   
  274.     UnregisterClass(L"D3D", hInstance);  
  275.     return 0;  
  276. }  

 

代码注意事项

1.可以通过设置定义在文件开始出的宏,决定读取哪个格式的像素数据(bgra,yuv420p)。

[cpp]  view plain copy 在CODE上查看代码片 派生到我的代码片
 
  1. //set '1' to choose a type of file to play    
  2. //Read BGRA data  
  3. #define LOAD_BGRA    0  
  4. //Read YUV420P data  
  5. #define LOAD_YUV420P 1  



2.窗口的宽高为screen_w,screen_h。像素数据的宽高为pixel_w,pixel_h。它们的定义如下。

 

[cpp]  view plain copy 在CODE上查看代码片 派生到我的代码片
 
  1. //Width, Height    
  2. const int screen_w=500,screen_h=500;    
  3. const int pixel_w=320,pixel_h=180;    

 

 

3.其他要点
本程序使用的是Win32的API创建的窗口。但注意这个并不是MFC应用程序的窗口。MFC代码量太大,并不适宜用来做教程。因此使用Win32的API创建窗口。程序的入口函数是WinMain(),其中调用了CreateWindow()创建了显示视频的窗口。此外,程序中的消息循环使用的是PeekMessage()而不是GetMessage()。GetMessage()获取消息后,将消息从系统中移除,当系统无消息时,会等待下一条消息,是阻塞函数。而函数PeekMesssge()是以查看的方式从系统中获取消息,可以不将消息从系统中移除(相当于“偷看”消息),是非阻塞函数;当系统无消息时,返回FALSE,继续执行后续代码。使用PeekMessage()的好处是可以保证每隔40ms可以显示下一帧画面。

运行结果

不论选择读取哪个格式的文件,程序的最终输出效果都是一样的,如下图所示。

 

下载

代码位于“Simplest Media Play”中



SourceForge项目地址:https://sourceforge.net/projects/simplestmediaplay/
CSDN下载地址:http://download.csdn.net/detail/leixiaohua1020/8054395


上述工程包含了使用各种API(Direct3D,OpenGL,GDI,DirectSound,SDL2)播放多媒体例子。其中音频输入为PCM采样数据。输出至系统的声卡播放出来。视频输入为YUV/RGB像素数据。输出至显示器上的一个窗口播放出来。
通过本工程的代码初学者可以快速学习使用这几个API播放视频和音频的技术。
一共包括了如下几个子工程:
simplest_audio_play_directsound:  使用DirectSound播放PCM音频采样数据。
simplest_audio_play_sdl2:  使用SDL2播放PCM音频采样数据。
simplest_video_play_direct3d:  使用Direct3D的Surface播放RGB/YUV视频像素数据。
simplest_video_play_direct3d_texture:使用Direct3D的Texture播放RGB视频像素数据。
simplest_video_play_gdi:  使用GDI播放RGB/YUV视频像素数据。
simplest_video_play_opengl:  使用OpenGL播放RGB/YUV视频像素数据。
simplest_video_play_opengl_texture: 使用OpenGL的Texture播放YUV视频像素数据。
simplest_video_play_sdl2:  使用SDL2播放RGB/YUV视频像素数据。

目录
相关文章
|
1月前
|
编解码 算法 vr&ar
深度剖析FFmpeg视频解码后的帧处理到Qt显示 从AVFrame到QImage的转换(二)
深度剖析FFmpeg视频解码后的帧处理到Qt显示 从AVFrame到QImage的转换
28 1
|
1月前
|
存储 编解码 算法
深度剖析FFmpeg视频解码后的帧处理到Qt显示 从AVFrame到QImage的转换(一)
深度剖析FFmpeg视频解码后的帧处理到Qt显示 从AVFrame到QImage的转换
60 1
|
3月前
|
存储 编解码 Java
视频渲染的推荐8位YUV格式
视频渲染的推荐8位YUV格式
62 0
|
7月前
|
前端开发 Android开发 开发者
Android平台RTSP、RTMP播放端如何实现YUV或ARGB数据按设定角度旋转
做音视频RTSP或RTMP直播播放器的时候,不免会遇到这样的诉求,实时播放或快照的时候,由于前端摄像头安装角度不一定是正向,导致播放或快照的时候,视频view显示的画面是呈90° 180°甚至270°旋转的。
133 0
|
7月前
|
编解码 图形学 Android开发
如何实现RTMP或RTSP播放端回调YUV/RGB数据?
今天某乎收到个问题推荐,如何实现RTSP回调YUV数据,用于二次处理? 正好前些年我们做RTSP和RTMP直播播放的时候,实现过相关的需求,本文就以Android为例,大概说说具体实现吧。
|
存储 编解码 算法
【Android FFMPEG 开发】FFMPEG AVFrame 图像格式转换 YUV -> RGBA ( 获取 SwsContext | 初始化图像数据存储内存 | 图像格式转换 )
【Android FFMPEG 开发】FFMPEG AVFrame 图像格式转换 YUV -> RGBA ( 获取 SwsContext | 初始化图像数据存储内存 | 图像格式转换 )
382 0
|
传感器 编解码 芯片
IPC网络高清摄像机基础知识4(Sensor信号输出YUV、RGB、RAW DATA、JPEG 4种方式区别) 【转】
转自:http://blog.csdn.net/times_poem/article/details/51682785 [-] 一 概念介绍 二 两个疑问 三 RAW和JPEG的区别  1 概念说明 32 为何要拍摄RAW  33 JPEG格式有什么优点  34 我...
1505 0
|
存储 缓存 编解码
最简单的视音频播放示例4:Direct3D播放RGB(通过Texture)
本文接着上一篇文章继续记录Direct3D(简称D3D)播放视频的技术。上一篇文章中已经记录了使用Direct3D中的Surface渲染视频的技术。本文记录一种稍微复杂但是更加灵活的渲染视频的方式:使用Direct3D中的Texture(纹理)渲染视频。
1420 0
|
存储 缓存 API
最简单的视音频播放示例5:OpenGL播放RGB/YUV
本文记录OpenGL播放视频的技术。OpenGL是一个和Direct3D同一层面的技术。相比于Direct3D,OpenGL具有跨平台的优势。尽管在游戏领域,DirectX的影响力已渐渐超越OpenGL并被大多数PC游戏开发商所采用,但在专业高端绘图领域,OpenGL因为色彩准确,仍然是不能被取代的主角。
1489 0
|
存储 API C++
最简单的视音频播放示例7:SDL2播放RGB/YUV
本文记录SDL播放视频的技术。在这里使用的版本是SDL2。实际上SDL本身并不提供视音频播放的功能,它只是封装了视音频播放的底层API。在Windows平台下,SDL封装了Direct3D这类的API用于播放视频;封装了DirectSound这类的API用于播放音频。
2193 0