【算法导论】二叉树的建立

简介: 二叉树的建立 基本概念:         有序树与无序树:若将树中的每个节点的各个子树都看成是从左到右有次序的,则称该树为有序树,否则为无序数。

二叉树的建立

基本概念:

        有序树与无序树:若将树中的每个节点的各个子树都看成是从左到右有次序的,则称该树为有序树,否则为无序数。

        顺序存储:从根节点起,自上而下,从左至右的方式对节点进行顺序编号,编号即对应为要存储的数组的下标。于是节点与数组元素就一一对应了。

        满二叉树、完全二叉树、非完全二叉树的区别:


二叉树的性质:

性质1  在二叉树的第i层上至多有2i1个结点(i≥1)

性质2  深度为k的二叉树至多有2k-1个结点(k≥1)

性质3  对任何一棵二叉树,如果其终端结点数为n0,度为2的结点数为n2,则n0=n2+1

性质4  具有n个结点的完全二叉树的深度为ëlog2nû+1或élog2(n+1)ù。其中ëxû表示不大于x的最大整数,éxù表示不小于x的最小整数。

二叉树建立的基本思想:依次从原数组中读取结点信息,建立一个新结点来存储这个元素信息。若新结点是第一个结点,则令其为根结点,否则将新结点作为孩子链接到它的双亲结点上。如此反复进行,直到数组元素全部读完为止。为了使新结点能够与双亲结点正确相连,并考虑到这种方法中先建立的结点其孩子结点也一定先建立的特点,可以设置一个指针类型的数组构成的队列来保存已输入结点的地址,并使队尾(rear)指向当前输入的结点,队头(front)指向这个结点的双亲结点。由于根结点的地址放在队列的第一个单元里,所以当rear为偶数时(注意根节点不是数组的第一个元素),则rear所指的结点应作为左孩子与其双亲链接,否则rear所指的结点应作为右孩子与其双亲链接。若一个双亲结点与两个孩子链接完毕,则进行出队操作,使队头指针指向下一个待链接的双亲结点。

具体算法如下:

#include<stdio.h>
#include<malloc.h>
#include<stdlib.h>

#define maxsize 10
typedef int datatype;
typedef struct node
{
	datatype data;
	struct node *lchild,*rchild;
} bitree;//二叉树的节点结构

bitree* CreatBitree(int* arrayA,int n);//创建二叉树(以顺序存储方式)
void preorder(bitree *p);//先序遍历算法
void midorder(bitree *p);//中序遍历算法
void postorder(bitree *p);//后序遍历算法

void main()
{
	int arrayA[9]={0,1,2,3,4,5,6,7,8};//第一个节点没有用于存储数据,是为了方便计算
	int n=sizeof(arrayA)/sizeof(int);

	bitree *head=NULL;//初始化指向链表的头指针

	head=CreatBitree(arrayA,n);//建立链表

}

bitree* CreatBitree(int* arrayA,int n)//顺序存储 建立二叉树
{
	bitree *root;
	bitree *queue[maxsize];//队列用于保存已输入节点的地址
	bitree *p;
	int front,rear;
	front=1;rear=0;//指向队列的头尾
	root=NULL;

	for(int i=1;i<n;i++)
	{
		p=(bitree*)malloc(sizeof(bitree));//创立节点并赋值
		p->data=arrayA[i];
		p->lchild=NULL;
		p->rchild=NULL;

		rear++;
		queue[rear]=p;

		if(rear==1)//判断是否为输入的第一个节点
			root=p;
		else
		{
			if(i%2==0)//新节点为左孩子
				queue[front]->lchild=p;
			else//新节点为右孩子
			{
				queue[front]->rchild=p;
				front=front+1;
			}
		}

	}

	return root;
}

原文:http://blog.csdn.net/tengweitw/article/details/9786571

作者:nineheadedbird


相关文章
【C++数据结构——树】二叉树的遍历算法(头歌教学实验平台习题) 【合集】
本任务旨在实现二叉树的遍历,包括先序、中序、后序和层次遍历。首先介绍了二叉树的基本概念与结构定义,并通过C++代码示例展示了如何定义二叉树节点及构建二叉树。接着详细讲解了四种遍历方法的递归实现逻辑,以及层次遍历中队列的应用。最后提供了测试用例和预期输出,确保代码正确性。通过这些内容,帮助读者理解并掌握二叉树遍历的核心思想与实现技巧。
37 2
文件管理系统中基于 Python 语言的二叉树查找算法探秘
在数字化时代,文件管理系统至关重要。本文探讨了二叉树查找算法在文件管理中的应用,并通过Python代码展示了其实现过程。二叉树是一种非线性数据结构,每个节点最多有两个子节点。通过文件名的字典序构建和查找二叉树,能高效地管理和检索文件。相较于顺序查找,二叉树查找每次比较可排除一半子树,极大提升了查找效率,尤其适用于海量文件管理。Python代码示例包括定义节点类、插入和查找函数,展示了如何快速定位目标文件。二叉树查找算法为文件管理系统的优化提供了有效途径。
50 5
分享一些提高二叉树遍历算法效率的代码示例
这只是简单的示例代码,实际应用中可能还需要根据具体需求进行更多的优化和处理。你可以根据自己的需求对代码进行修改和扩展。
如何提高二叉树遍历算法的效率?
选择合适的遍历算法,如按层次遍历树时使用广度优先搜索(BFS),中序遍历二叉搜索树以获得有序序列。优化数据结构,如使用线索二叉树减少空指针判断,自定义节点类增加辅助信息。利用递归与非递归的特点,避免栈溢出问题。多线程并行遍历提高速度,注意线程安全。缓存中间结果,避免重复计算。预先计算并存储信息,提高遍历效率。综合运用这些方法,提高二叉树遍历算法的效率。
78 5
二叉树遍历算法的应用场景有哪些?
【10月更文挑战第29天】二叉树遍历算法作为一种基础而重要的算法,在许多领域都有着不可或缺的应用,它为解决各种复杂的问题提供了有效的手段和思路。随着计算机科学的不断发展,二叉树遍历算法也在不断地被优化和扩展,以适应新的应用场景和需求。
75 0
|
7月前
|
【数据结构和算法】--- 二叉树(4)--二叉树链式结构的实现(2)
【数据结构和算法】--- 二叉树(4)--二叉树链式结构的实现(2)
53 0
【数据结构和算法】---二叉树(1)--树概念及结构
【数据结构和算法】---二叉树(1)--树概念及结构
68 0
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)
这篇文章主要介绍了多路查找树的基本概念,包括二叉树的局限性、多叉树的优化、B树及其变体(如2-3树、B+树、B*树)的特点和应用,旨在帮助读者理解这些数据结构在文件系统和数据库系统中的重要性和效率。
40 0
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)
数据结构与算法学习十七:顺序储存二叉树、线索化二叉树
这篇文章主要介绍了顺序存储二叉树和线索化二叉树的概念、特点、实现方式以及应用场景。
53 0
数据结构与算法学习十七:顺序储存二叉树、线索化二叉树

热门文章

最新文章