使用Kubernetes和Docker进行简单的leader选举

简介: 本文讲的是使用Kubernetes和Docker进行简单的leader选举,【编者的话】Kubernetes简化了运行在集群中的服务部署和运维管理,然而,它也简化了这些管理工作的部署。本篇文章将会展示如何在分布式应用系统中使用Kubernetes来简单地运行leader选举。
本文讲的是使用Kubernetes和Docker进行简单的leader选举 【编者的话】Kubernetes简化了运行在集群中的服务部署和运维管理,然而,它也简化了这些管理工作的部署。本篇文章将会展示如何在分布式应用系统中使用Kubernetes来简单地运行leader选举。

概述

为了可靠性和伸缩性,分布式系统通常会复制多个服务任务,但往往有必要指定一个副本作为leader负责协调所有的副本。

通常在leader选举中,一组有机会成为leader的候选者都是可以确认的。这些候选者都竞相宣布自己是leader,其中会有一个候选者脱颖而出成为leader。一旦赢了选举之后,leader将会继续以leader身份发送“心跳”来更新他们的位置。而其它的候选者将会周期性地作出尝试来成为leader,这套机制确保了如果当前的leader由于某些原因失效了,可以快速指定新的leader。

leader选举的实现通常需要任一一套分布式协调系统比如ZooKeeper、etcd或者Consul,使用它们来取得共识,或者交替实现自己的共识算法。接下来我们将会看到Kubernetes如何使得在应用中进行leader选举明显更容易。

Kubernetes中leader选举的实现

leader选举的第一个要求是对于有意成为leader的一组候选者的规范,Kubernetes已经使用了Endpoints来表示一组包含服务的Pods副本,所以我们将重用这个相同的对象(旁白:你可能会认为我们将使用ReplicationControllers,但它们被绑定到一个特定的二进制软件包,即使在执行滚动更新的过程中也通常需要一个leader)。

执行leader选举将使用Kubernetes API中的两个属性:
  • ResourceVersions——每个API都有一个唯一的ResourceVersions,用户可以使用这些版本在Kubernetes对象上执行Compare-and-Swap操作。
  • Annotations——每个API都可以被用于客户端的任意键/值对注解。

鉴于这些原语,使用选主的代码相对简单,可以在这儿找到相关代码,运行如下:
$ kubectl run leader-elector --image=gcr.io/google_containers/leader-elector:0.4 --replicas=3 -- --election=example

这将会创建一个有三个副本的leader选举组:
$ kubectl get pods
NAME                   READY     STATUS    RESTARTS   AGE
leader-elector-inmr1   1/1       Running   0          13s
leader-elector-qkq00   1/1       Running   0          13s
leader-elector-sgwcq   1/1       Running   0          13s

为了查看哪一个Pod被选为了leader,用户可以访问Pods的日志,在下面的位置替换为你自己的Pod的名字:
${pod_name}, (e.g. leader-elector-inmr1 from the above)

$ kubectl logs -f ${name}
leader is (leader-pod-name)

或者,用户可以直接检查Endpoints对象:
# ‘example’ is the name of the candidate set from the above kubectl run … command
$ kubectl get endpoints example -o yams

现在需要验证leader选举是否生效,在另外一个终端中执行:
$ kubectl delete pods (leader-pod-name)

这个命令将会删除已有的leader,因为Replication Controller管理Pods组,一个新的Pod将会替换掉已经删除的,从而确保副本数目仍然为3。通过leader选举,这三个Pod中将会有一个被选为leader,并且leader角色还会失效转移到不同的Pod上。因为Kubernetes框架中Pod在终止前会有一个宽限期,通常是持续30~40秒。
leader选举容器提供了一个简单的Web服务器,可以运行在任何地址上(比如 http://localhost:4040 ),我们可以通过删除一个已有的leader选举组并创建一个新的来测试这个容器,此处可以另外传入一个形如-http=(host):(port) 规格的配置到镜像中,这样就会导致每一个组成员通过Webhook来获得有关leader的服务信息。
# delete the old leader elector group
$ kubectl delete rc leader-elector

# create the new group, note the --http=localhost:4040 flag
$ kubectl run leader-elector --image=gcr.io/google_containers/leader-elector:0.4 --replicas=3 -- --election=example --http=0.0.0.0:4040

# create a proxy to your Kubernetes api server
$ kubectl proxy

接着可以访问:
http://localhost:8001/api/v1/proxy/namespaces/default/pods/(leader-pod-name):4040/

然后就会看到:
{"name":"(name-of-leader-here)"} 

leader选举与sidecars

太好了,现在可以通过HTTP来进行leader选举和找出leader,但怎么能在您自己的应用程序中使用它们呢?这就需要引入Sidecars的概念。在Kubernetes中,Pods由一个或者多个容器组成,通常,这意味着添加sidecars容器到主应用程序中组成一个Pod(对于这个主题的更详细的处理,请看我以前的博客文章)。

leader选举容器可以作为一个Sidecars来从自己的应用中使用,Pod中的任何容器对谁是当前的选主感兴趣的都可以简单地通过 http://localhost:4040  来访问,然后返回一个简单的JSON对象,其中包含了当前选主的名字。既然Pod中的所有容器共享了相同的网络命名空间,就不再需要服务发现了!

举个例子,有一个简单的Node.js应用程序连接到leader选举Sidecar,然后打印出这个是否是当前的选主,领导人选举Sidecar将其标识符设置为默认的主机名。
var http = require('http');
// This will hold info about the current master
var master = {};

// The web handler for our nodejs application
var handleRequest = function(request, response) {
response.writeHead(200);
response.end("Master is " + master.name);
};

// A callback that is used for our outgoing client requests to the sidecar
var cb = function(response) {
var data = '';
response.on('data', function(piece) { data = data + piece; });
response.on('end', function() { master = JSON.parse(data); });
};

// Make an async request to the sidecar at http://localhost:4040
var updateMaster = function() {
var req = http.get({host: 'localhost', path: '/', port: 4040}, cb);
req.on('error', function(e) { console.log('problem with request: ' + e.message); });
req.end();
};

// Set up regular updates
updateMaster();
setInterval(updateMaster, 5000);

// set up the web server
var www = http.createServer(handleRequest);
www.listen(8080); 

当然,可以使用任何语言,选择支持HTTP和JSON来使用这个Sidecar。

总结

希望我已经向你展示了是多么容易为分布式应用程序使用Kubernetes来构建leader选举。在以后的部分我们将向您展示Kubernetes是如何使得构建分布式系统更容易。与此同时,还前往 Google容器引擎 或kubernetes.io来开始使用Kubernetes。

原文链接:Simple leader election with Kubernetes and Docker(翻译:胡震)

原文发布时间为:2016-01-19
本文作者:国会山上的猫TuxHu 
本文来自云栖社区合作伙伴DockerOne,了解相关信息可以关注DockerOne。
原文标题:使用Kubernetes和Docker进行简单的leader选举
相关实践学习
容器服务Serverless版ACK Serverless 快速入门:在线魔方应用部署和监控
通过本实验,您将了解到容器服务Serverless版ACK Serverless 的基本产品能力,即可以实现快速部署一个在线魔方应用,并借助阿里云容器服务成熟的产品生态,实现在线应用的企业级监控,提升应用稳定性。
云原生实践公开课
课程大纲 开篇:如何学习并实践云原生技术 基础篇: 5 步上手 Kubernetes 进阶篇:生产环境下的 K8s 实践 相关的阿里云产品:容器服务 ACK 容器服务 Kubernetes 版(简称 ACK)提供高性能可伸缩的容器应用管理能力,支持企业级容器化应用的全生命周期管理。整合阿里云虚拟化、存储、网络和安全能力,打造云端最佳容器化应用运行环境。 了解产品详情: https://www.aliyun.com/product/kubernetes
目录
相关文章
|
1月前
|
运维 Kubernetes 监控
构建高效自动化运维体系:基于Docker和Kubernetes的实践指南
【2月更文挑战第30天】 在当今快速发展的云计算时代,传统的IT运维模式已难以满足业务的敏捷性和稳定性需求。本文深入探讨了如何通过Docker容器化技术和Kubernetes集群管理工具构建一个高效、可靠的自动化运维体系。文章首先概述了容器化技术和微服务架构的基本概念,随后详细阐述了基于Docker的应用打包、部署流程,以及Kubernetes在自动化部署、扩展和管理容器化应用中的关键作用。最后,文中通过案例分析,展示了如何在实际场景中利用这些技术优化运维流程,提高系统的整体效率和可靠性。
|
1天前
|
存储 运维 Kubernetes
Docker+Kubernetes/K8s+Jenkins视频资料【干货分享】
Docker+Kubernetes/K8s+Jenkins视频资料【干货分享】
Docker+Kubernetes/K8s+Jenkins视频资料【干货分享】
|
1天前
|
存储 Kubernetes Docker
Kubernetes(K8S)集群管理Docker容器(概念篇)
Kubernetes(K8S)集群管理Docker容器(概念篇)
|
27天前
|
运维 Kubernetes 持续交付
构建高效自动化运维体系:基于Docker和Kubernetes的最佳实践
在现代云计算环境中,自动化运维成为保障系统稳定性与提升效率的关键。本文深入探讨了如何利用Docker容器化技术和Kubernetes容器编排工具构建一个高效、可靠的自动化运维体系。文中不仅介绍了相关的技术原理,还结合具体案例分析了实施过程中的常见问题及解决方案,为读者提供了一套行之有效的最佳实践指南。
|
1月前
|
Kubernetes 开发者 Docker
构建高效微服务架构:Docker与Kubernetes的完美搭档
【2月更文挑战第29天】在当今快速发展的软件开发领域,微服务架构已成为提高系统可维护性、扩展性和敏捷性的关键解决方案。本文将深入探讨如何利用Docker容器化技术和Kubernetes集群管理工具,共同构建一个既高效又可靠的微服务环境。我们将分析Docker和Kubernetes的核心功能,并展示它们如何协同工作以简化部署流程、增强服务发现机制以及实现无缝的服务伸缩。通过实际案例分析,本文旨在为开发者提供一套实用的微服务架构设计和实施指南。
|
1月前
|
Kubernetes API Docker
Docker+K8s基础(重要知识点总结)
Docker+K8s基础(重要知识点总结)
65 0
|
1月前
|
Ubuntu Shell 开发者
Docker容器管理
Docker容器管理
35 0
|
1月前
|
Kubernetes 云计算 开发者
云计算中的容器化技术:Docker与Kubernetes的实践
云计算中的容器化技术:Docker与Kubernetes的实践
107 0
|
Web App开发 存储 应用服务中间件
迈入Docker、Kubernetes容器世界的大门
本文通过简单的示例,带领初学者快速迈入Docker、Kubernetes(K8S)容器世界的大门。假设,你已拥有一个K8S集群,否则,可通过minikube或minishift快速搭建一实验环境。 Docker Docker与K8S ​ Docker本质上是一种虚拟化技术,类似于KVM、XEN、VMWARE,但其更轻量化,且将Docker部署在Linux环境时,其依赖于Linux容器技术(LXC)。
1818 0