大数据的逆袭:传统数据库市场的变革

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生数据库 PolarDB MySQL 版,通用型 2核8GB 50GB
简介:
文章讲的是 大数据的逆袭:传统数据库市场的变革大数据是什么?Gartner认为,大数据是超出了常用硬件环境和软件工具在可接受的时间内为其用户收集、管理和处理数据的能力。麦肯锡认为,大数据是指大小超出了典型数据库软件工具收集、存储。管理和分析能力的数据集。对于大数据而言,每个时代都有它自己的定义,大数据的界定会随着技术的进步而不断发生变化。

  然而,不管是哪种定义,似乎都否定了传统数据库在大数据市场的作用。面对不断增长的数据量和多样的数据类型,很多企业用户选择NoSQL和Hadoop替代原有数据库,Facebook和Twitter就是这其中的典型。据IDC预计,2015年大数据技术和服务市场将增长至169亿美元,年复合增长率达40%,大量创新型企业涌入大数据市场,威胁到传统数据库厂商的地位。

  传统数据库厂商陆续支持Hadoop

  “以不变应万变”不再是大数据时代应有的策略,老牌数据库厂商在保持传统市场领先的基础上,不断拓展新市场。以Hadoop为例,传统数据库厂商纷纷推出各自的大数据解决方案,这其中涉及最多的就是Hadoop技术。

  ·Oracle:甲骨文公司在数据库领域一直处于领先地位,其旗下的Oracle数据库是一款最受欢迎的关系型数据库产品。甲骨文公司全球副总裁、大中华区技术总经理喻思成曾表示,甲骨文公司更专注的是结构化的工具和RDBMS平台,但在过去的一年中,甲骨文公司也开始走进大数据时代。事实也的确如此,甲骨文公司意识到Hadoop在大数据处理方面的潜力,推出以Hadoop为基础的大数据机(Big Data Application),其中包括开源Apache Hadoop、Oracle NoSQL数据库、Oracle数据集成Hadoop应用适配器、Oracle Hadoop装载器以及开源R,并与Cloudera公司合作提供Apache Hadoop系列软件。

  ·IBM DB2:IBM是关系型数据库的创造者,对数据库的诞生和发展举足轻重,然而处在大数据的新时期,老牌关系型数据库也需要不断创新、迎接挑战。IBM中国研究院院士、首席技术官王云曾在2012中国数据库技术大会上表示,大数据不能用传统方法处理,传统关系型数据库起源于OLTP功能,能够保证数据准确记录;而大数据是新的应用,是OLAP的体现,这也是关系型数据库不能满足大数据的原因。IBM推出的大数据平台包括Hadoop和Stream Computing两个组件,通过新的路径解决大数据分析处理。

  ·SQL Server:微软作为全球知名的软件公司,在数据库领域的地位不容小觑。微软SQL Server 2012引入Hadoop,帮助客户无缝存储和处理所有类型的数据,包括结构化、非结构化和实时数据。除此之外,微软还将同时在Windows Azure平台和Windows Server上提供 Hadoop,形成完整的大数据解决方案。正如微软亚太研发集团首席技术官孙博凯所说,微软与Hadoop是一个强强组合,能够把Hadoop的高性能、高可扩展与微软产品易用、易部署的传统优势融合到一起。

  ·SAP:SAP公司是全球知名的企业管理软件供应商,自2010年SAP收购Sybase以来,开始成为数据库界一颗冉冉升起的新星。SAP将数据库技术作为2012年重点发展领域之一,形成了以SAP HANA为核心,以SAP Sybase数据库为基础的大数据战略。在这一战略中,特别重要的一环就是Hadoop。通过SAP HANA和SAP Sybase IQ与Hadoop的集成,增强对Hadoop等大数据源的获取能力,并提供深度集成的预处理基础架构。

  ·EMC Greenplum:EMC是全球知名信息存储服务提供商,与SAP相似,在2010年收购了Greenplum,开始发展其数据库市场。目前Greenplum的数据库产品包括传统的Greenplum Database和Greenplum HD(Hadoop),前者用来应对企业结构化数据,后者可以将非结构化数据导入Greenplum中进行存储和分析。EMC在中国的市场战略,以“大数据推动业务转型”为核心,EMC数据计算产品部大中华区总经理刘伟光曾对笔者表示,EMC之所以会推出Greenplum Hadoop版本,是对Hadoop的未来发展前景充满信心。

  除了以上提到的五款主流数据库,仍有越来越多的传统数据库厂商正在加入Hadoop阵营,这其中还包括Teradata、Informatica、Pentaho、Talend等数据库、数据仓库及商业智能服务提供商。此外,Hadoop还是NoSQL数据库的主要架构之一。


作者:王玉圆

来源:IT168

原文链接:大数据的逆袭:传统数据库市场的变革

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
打赏
0
0
0
0
14291
分享
相关文章
大数据新视界--大数据大厂之MySQL 数据库课程设计:开启数据宇宙的传奇之旅
本文全面剖析数据库课程设计 MySQL,展现其奇幻魅力与严峻挑战。通过实际案例凸显数据库设计重要性,详述数据安全要点及学习目标。深入阐述备份与恢复方法,并分享优秀实践项目案例。为开发者提供 MySQL 数据库课程设计的全面指南,助力提升数据库设计与管理能力,保障数据安全稳定。
大数据新视界--大数据大厂之MySQL 数据库课程设计:开启数据宇宙的传奇之旅
大数据新视界--大数据大厂之MySQL数据库课程设计:MySQL集群架构负载均衡故障排除与解决方案
本文深入探讨 MySQL 集群架构负载均衡的常见故障及排除方法。涵盖请求分配不均、节点无法响应、负载均衡器故障等现象,介绍多种负载均衡算法及故障排除步骤,包括检查负载均衡器状态、调整算法、诊断修复节点故障等。还阐述了预防措施与确保系统稳定性的方法,如定期监控维护、备份恢复策略、团队协作与知识管理等。为确保 MySQL 数据库系统高可用性提供全面指导。
大数据新视界--大数据大厂之MySQL数据库课程设计:MySQL 数据库 SQL 语句调优方法详解(2-1)
本文深入介绍 MySQL 数据库 SQL 语句调优方法。涵盖分析查询执行计划,如使用 EXPLAIN 命令及理解关键指标;优化查询语句结构,包括避免子查询、减少函数使用、合理用索引列及避免 “OR”。还介绍了索引类型知识,如 B 树索引、哈希索引等。结合与 MySQL 数据库课程设计相关文章,强调 SQL 语句调优重要性。为提升数据库性能提供实用方法,适合数据库管理员和开发人员。
大数据新视界--大数据大厂之MySQL 数据库课程设计:数据安全深度剖析与未来展望
本文深入探讨数据库课程设计 MySQL 的数据安全。以医疗、电商、企业案例,详述用户管理、数据加密、备份恢复及网络安全等措施,结合数据安全技术发展趋势,与《大数据新视界 -- 大数据大厂之 MySQL 数据库课程设计》紧密关联,为 MySQL 数据安全提供全面指南。
大数据新视界--大数据大厂之MySQL 数据库课程设计:MySQL 数据库 SQL 语句调优的进阶策略与实际案例(2-2)
本文延续前篇,深入探讨 MySQL 数据库 SQL 语句调优进阶策略。包括优化索引使用,介绍多种索引类型及避免索引失效等;调整数据库参数,如缓冲池、连接数和日志参数;还有分区表、垂直拆分等其他优化方法。通过实际案例分析展示调优效果。回顾与数据库课程设计相关文章,强调全面认识 MySQL 数据库重要性。为读者提供综合调优指导,确保数据库高效运行。
媒体声音|专访阿里云数据库周文超博士:AI就绪的智能数据平台设计思路
媒体声音|专访阿里云数据库周文超博士:AI就绪的智能数据平台设计思路
媒体声音|专访阿里云数据库周文超博士:AI就绪的智能数据平台设计思路
在生成式AI的浪潮中,数据的重要性日益凸显。大模型在实际业务场景的落地过程中,必须有海量数据的支撑:经过训练、推理和分析等一系列复杂的数据处理过程,才能最终产生业务价值。事实上,大模型本身就是数据处理后的产物,以数据驱动的决策与创新需要通过更智能的平台解决数据多模处理、实时分析等问题,这正是以阿里云为代表的企业推动 “Data+AI”融合战略的核心动因。
云计算与大数据平台的数据库迁移与同步
本文详细介绍了云计算与大数据平台的数据库迁移与同步的核心概念、算法原理、具体操作步骤、数学模型公式、代码实例及未来发展趋势与挑战。涵盖全量与增量迁移、一致性与异步复制等内容,旨在帮助读者全面了解并应对相关技术挑战。
128 3
从湖仓分离到湖仓一体,四川航空基于 SelectDB 的多源数据联邦分析实践
川航选择引入 SelectDB 建设湖仓一体大数据分析引擎,取得了数据导入效率提升 3-6 倍,查询分析性能提升 10-18 倍、实时性提升至 5 秒内等收益。
从湖仓分离到湖仓一体,四川航空基于 SelectDB 的多源数据联邦分析实践

热门文章

最新文章

下一篇
oss创建bucket