阿里云MVP Meetup 《云数据·大计算:海量日志数据分析与应用》之《数据采集:日志数据上传》篇

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 大数据workshop:《云数据·大计算:海量日志数据分析与应用》之《数据采集:日志数据上传》篇

大数据workshop:《云数据·大计算:海量日志数据分析与应用》之《数据采集:日志数据上传》篇

本手册为阿里云MVP Meetup Workshop《云计算·大数据:海量日志数据分析与应用》的《数据采集:日志数据上传》篇而准备。主要为保障各位学员在workshop当天能够顺畅进行动手实操,那么本节为学员掌握阿里云数据采集的操作和使用。

实验涉及大数据产品

实验环境准备

必备条件:首先需要确保自己有阿里云云账号并已实名认证。详细点击:

开通大数据计算服务MaxCompute

若已经开通和购买了MaxCompute,请忽略次步骤直接进入创建Data IDE项目空间。

  • step1:进入阿里云官网并点击右上角登录阿里云账号。
    登录
  • step2:点击进入数加 · MaxCompute产品详情页,点击立即开通

image

立即开通

  • step3:选择 按量付费,且选择 华东2(上海) Region 点击 立即购买** 。
    购买

创建Data IDE项目空间

确保阿里云账号处于登录状态。

  • step1:点击进入大数据(数加)管理控制台>大数据开发套件tab页面下。
  • step2:点击创建项目,跳出创建项目对话框。
    创建项目
  • step3:勾选付费方式为I/O后付费,填写项目名称及相关信息,点击确定,直至返回创建成功状态。
    配置项目

项目名需要字母或下划线开头,只能包含字母下划线和数字。
【注意】项目名称全局唯一,建议大家采用自己容易区分的名称来作为本次workshop的项目空间名称。

进入大数据开发套件

确保阿里云账号处于登录状态。

项目列表

  • step2:点击已经创建的项目空间名称,进入大数据开发套件。

点击进入项目

进入大数据开发套件

新建数据源

根据workshop模拟的场景,需要分别创建FTP数据源和RDS数据源。

1.新建FTP数据源
  • step1:点击数据集成>数据源管理,继而点击新增数据源

新增数据源

  • step2:选择数据源类型ftp,同时Protocol选择为sftp,其他配置项如下。

image

FTP数据源配置信息如下:

  • 数据源类型类型:有公网ip
  • 数据源名称:ftp_workshop_log
  • 数据源描述:ftp日志文件同步
  • Protocol:sftp
  • Host:10.80.177.33
  • Port:22
  • 用户名/密码:workshop/workshop
  • step3:点击测试连通性,连通性测试通过后,点击确定保存配置。

保存ftp数据源

2.新建RDS数据源
  • step1:点击数据集成>数据源管理,继而点击新增数据源

新增数据源

  • step2:选择数据源类型为RDS>mysql并完成相关配置项。

image

RDS数据源配置信息如下:

  • 数据源类型:阿里云数据库(RDS)
  • 数据源名称:rds_workshop_log
  • 数据源描述:rds日志数据同步
  • RDS实例名称:rm-bp1z69dodhh85z9qa
  • RDS实例购买者ID:1156529087455811
  • 数据库名:workshop
  • 用户名/密码:workshop/workshop#2017
  • step3:点击测试连通性,连通性测试通过后,点击确定保存配置。

保存RDS数据源

创建目标表

  • step1:点击数据开发,进入数据开发首页中点击新建脚本

新建脚本

  • step2:配置文件名称为create_table_ddl,类型选择为ODPS SQL,点击提交

配置脚本

  • step3:编写DDL创建表语句,如下分别创建FTP日志对应目标表和RDS对应目标表.

编写DDL

DDL语句如下:

--创建ftp日志对应目标表
DROP TABLE IF EXISTS ods_raw_log_d;

CREATE TABLE ods_raw_log_d (
    col STRING
)
PARTITIONED BY (
    dt STRING
);

--创建RDS对应目标表
DROP TABLE IF EXISTS ods_user_info_d;

CREATE TABLE ods_user_info_d (
    uid STRING COMMENT '用户ID',
    gender STRING COMMENT '性别',
    age_range STRING COMMENT '年龄段',
    zodiac STRING COMMENT '星座'
)
PARTITIONED BY (
    dt STRING
);
AI 代码解读
  • step3:点击运行,直至日志信息返回成功表示两张目标表创建成功。

运行DDL

  • step4:可以使用desc语法来确认创建表是否成功。

DESC

  • step5:点击保存,保存编写的SQL建表语句。

保存DDL

新建工作流任务

  • step1:点击新建并选择新建任务
    新建任务
  • step2:选择工作流任务,调度类型选择为周期调度,其他配置项如下。

配置任务

  • step3:点击创建。
  • step4:进入工作流配置面板,并向面板中拖入一个虚节点(命名为workshop_start)和两个数据同步节点(分别命名为ftp_数据同步和rds_数据同步):
    新建虚拟节点

新建FTP同步

新建RDS同步

  • step5:拖拽连线将workshop_start虚节点设置为两个数据同步节点的上游节点,如下所示:

同步连线

  • step6:点击保存(或直接快捷键ctrl+s)。

配置数据同步任务

1)配置ftp_数据同步节点
  • step1:双击ftp_数据同步节点,进入节点配置界面。选择来源:并选择数据来源事先配置好的ftp数据源,为ftp_workshop_log,文件路径为/home/workshop/user_log.txt。可以对非压缩文件进行数据预览。

配置同步

同步预览

数据来源配置项具体说明如下:

  • 数据来源:ftp_workshop_ftp
  • 文件路径:/home/workshop/user_log.txt
  • 列分隔符:|
  • step2:选择目标。点击下一步

数据流向选择数据源为odps_first,表名为ods_raw_log_d。分区信息和清理规则都采取系统默认,即清理规则为写入前清理已有数据,分区按照${bdp.system.bizdate}。

  • step3:配置字段映射。连接要同步的字段。如下:字段映射
  • step4:在下一步操作中配置通道控制,作业速率上限为10MB/s,进入下一步。

通道控制

可在预览保存页面中,预览上述的配置情况,也可以进行修改,确认无误后,点击保存

  • step5:点击返回工作流面板。

返回工作流

2)配置rds_数据同步节点
  • step1:双击rds_数据同步节点进入配置界面。选择来源:选择数据来源为rds_workshop_log,表名为ods_user_info_d;切分键为使用默认生成列即可。点击数据预览,可以看到表中数据样例。

RDS选择来源

  • step2:进入下一步,选择目标数据源和表名。

RDS选择目标

  • step3:进入下一步,配置字段映射。默认会同名映射,字段映射关系采用默认即可,如下所示:

RDS字段映射

  • step4:进入下一步,配置作业速率上限。

RDS通道控制

  • step5:在预览保存页面中确认配置信息,无误后点击保存配置。

RDS预览保存

配置调度、提交工作流任务

  • step1:点击调度配置,配置调度参数

调度配置

  • step2:点击提交,提交已经配置的工作流任务。

提交工作流任务

  • step3:在变更节点列表弹出框中点击确定提交

确定提交任务

提交成功后工作流任务处于只读状态,如下:只读状态

测试运行工作流任务

  • step1:点击测试运行

测试运行

  • step2:在周期任务运行提醒弹出框点击确定

周期任务运行提醒

  • step3:在测试运行弹出框中,实例名称和业务日期都保持默认,点击运行

测试运行按钮

  • step4:在工作流任务测试运行弹出框中,点击前往运维中心

在运维中心可以查看任务视图,如下图表示该工作流任务(名称为workshop_start)正在运行。

运维中心测试

直至所有节点都运行返回成功状态即可(需要点击运维视窗中的刷新按钮查看实时状态)。如下所示:

数据同步测试成功

  • step5:点击节点,查看运行日志。

日志界面
)

确认数据是否成功导入MaxCompute

  • step1:返回到create_table_ddl脚本文件中。
  • step2:编写并执行sql语句查看导入ods_raw_log_d记录数。

数据预览

  • step3:同样编写并执行sql语句查看导入ods_user_info_d记录数。

附录:SQL语句如下,其中分区键需要更新为业务日期,如测试运行任务的日期为20171011,那么业务日期为20171010.

---查看是否成功写入MaxCompute

select count(*) from ods_raw_log_d where dt=业务日期;

select count(*) from ods_user_info_d where dt=业务日期;
AI 代码解读
相关实践学习
日志服务之使用Nginx模式采集日志
本文介绍如何通过日志服务控制台创建Nginx模式的Logtail配置快速采集Nginx日志并进行多维度分析。
目录
相关文章
SLS 重磅升级:超大规模数据实现完全精确分析
SLS 全新推出的「SQL 完全精确」模式,通过“限”与“换”的策略切换,在快速分析与精确计算之间实现平衡,满足用户对于超大数据规模分析结果精确的刚性需求。标志着其在超大规模日志数据分析领域再次迈出了重要的一步。
292 117
销售易CRM:移动端应用与数据分析双轮驱动企业增长
销售易CRM移动端应用助力企业随时随地掌控业务全局。销售人员可实时访问客户信息、更新进展,离线模式确保网络不佳时工作不中断。实时协作功能提升团队沟通效率,移动审批加速业务流程。强大的数据分析与可视化工具提供深度洞察,支持前瞻性决策。客户行为分析精准定位需求,优化营销策略。某中型制造企业引入后,业绩提升30%,客户满意度提高25%。
基于 PHP 语言的滑动窗口频率统计算法在公司局域网监控电脑日志分析中的应用研究
在当代企业网络架构中,公司局域网监控电脑系统需实时处理海量终端设备产生的连接日志。每台设备平均每分钟生成 3 至 5 条网络请求记录,这对监控系统的数据处理能力提出了极高要求。传统关系型数据库在应对这种高频写入场景时,性能往往难以令人满意。故而,引入特定的内存数据结构与优化算法成为必然选择。
31 3
阿里云云数据仓库:助力企业构建智能数据基石的云端利器 。阿里云云数据仓库优势与选型指南
阿里云数据仓库体系基于MaxCompute、AnalyticDB等核心产品,提供弹性敏捷的PB级数据处理能力,支持实时分析与智能决策。其六大优势包括无限弹性伸缩、极致性能表现、智能成本优化、全栈安全体系、生态无缝对接和AI增强分析,助力企业在数字经济时代应对数据爆发式增长的挑战。灵活透明的定价体系和行业实践案例展示了其在证券、新零售、物联网等领域的成功应用,为企业构建智能数据基座提供了清晰路径。
93 6
云数据库实战:基于阿里云RDS的Python应用开发与优化
在互联网时代,数据驱动的应用已成为企业竞争力的核心。阿里云RDS为开发者提供稳定高效的数据库托管服务,支持多种数据库引擎,具备自动化管理、高可用性和弹性扩展等优势。本文通过Python应用案例,从零开始搭建基于阿里云RDS的数据库应用,详细演示连接、CRUD操作及性能优化与安全管理实践,帮助读者快速上手并提升应用性能。
亚太唯一!阿里云连续5年入选Gartner®云数据库管理系统「领导者」象限
亚太唯一!阿里云连续5年入选Gartner®云数据库管理系统「领导者」象限
阿里云连续5年进入领导者象限!Gartner®云数据库管理系统报告发布
阿里云连续5年进入领导者象限!Gartner®云数据库管理系统报告发布
62 3
【YashanDB知识库】应用绑定参数的慢查询,慢日志抓取不到
【YashanDB知识库】应用绑定参数的慢查询,慢日志抓取不到
阿里云连续五年获评为Gartner®云数据库管理系统魔力象限领导者
阿里云连续五年获评为Gartner®云数据库管理系统魔力象限领导者

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等