Java延时实例分析:Lock vs Synchronized

简介:

这篇文章通过实例讨论了:

- java.concurrent.Lock创建的垃圾
- 比较Lock和synchronized
- 如何通过编程方式计算延时
- Lock和synchronized竞争带来的影响
- 延迟测试中由于遗漏(co-ordinated omission)可能对结果的影响

回到我最喜欢的一个主题:垃圾的创建与分配。可以从我以前的文章(如:性能优化的首要法则重视性能优化首要法则:逃逸分析的效果)获取更多关于这个议题的细节。尤其弄懂在性能问题上,为什么分配是如此重要的因素。

几天前,当我诊断一些 JIT 编译期间奇怪的分配问题时,发现 java.util.concurrent.locks.ReentrantLock 的分配有问题,不过这只在竞争条件下出现。(这一点很容易证明,只要运行一个在 Lock 上建立竞争并指定 –verbosegc 参数测试程序(类似下面的程序))。

示例是在有 Lock 竞争时 GC 的输出结果:

 
  1. [GC (Allocation Failure) 16384K->1400K(62976K), 0.0016854 secs] 
  2. [GC (Allocation Failure) 17784K->1072K(62976K), 0.0011939 secs] 
  3. [GC (Allocation Failure) 17456K->1040K(62976K), 0.0008452 secs] 
  4. [GC (Allocation Failure) 17424K->1104K(62976K), 0.0008338 secs] 
  5. [GC (Allocation Failure) 17488K->1056K(61952K), 0.0008799 secs] 
  6. [GC (Allocation Failure) 17440K->1024K(61952K), 0.0010529 secs] 
  7. [GC (Allocation Failure) 17408K->1161K(61952K), 0.0012381 secs] 
  8. [GC (Allocation Failure) 17545K->1097K(61440K), 0.0004592 secs] 
  9. [GC (Allocation Failure) 16969K->1129K(61952K), 0.0004500 secs] 
  10.  
  11. [GC (Allocation Failure) 17001K->1129K(61952K), 0.0003857 secs] 

我怀疑是否是在垃圾回收时必须对清理 Lock 上分配的空间,在高度竞争的环境下,将会选择一种比内建的 ‘synchronized‘ 更坏的同步策略。

当然,这个问题比其他任何问题都更加学术。如果你确实非常关心延迟,你会发现自己从来不会(或者绝不应该)有这样一种情况会需要这么多的线程锁。不过,请继续跟我一起探究这个问题,因为这个过程和结果都非常有趣。

简史:锁是2004年,在Java 1.5中引入的。由于对简单并发结构的迫切需要,锁以及其他并发工具因此而诞生。在这之前,你不得不通过内建的 synchronized 和 Object 的 wait()、notify() 方法来控制并发。

ReentrantLock 提供许多比 synchronized 更好的功能,下面是一些例子:

  • 变得非结构化——比如,不会受块或方法的限制,允许你跨多个方法持有锁。

  • 轮询锁

  • 等待锁超时

  • 配置失败策略

但是它们在延迟测试中有什么作用呢?

我写了一个简单的测试来比较 Lock 和 synchronized 的性能。

这段代码允许改变线程的数量(1个线程意味着不存在竞争)及竞争的数量。通过有遗漏(coordinated omission)和没有遗漏来衡量。
采用 Lock 或者 synchronised 来运行测试。

为了记录结果,我使用了 Histogram 类。该类是 Peter Lawrey 创建的。你可以在 Chronicle-Core 的工具类中找到该类。

 
  1. import org.junit.Test; 
  2.  
  3. import java.util.concurrent.locks.Lock; 
  4. import java.util.concurrent.locks.ReentrantLock; 
  5.  
  6. public class LockVsSync { 
  7.     private static final boolean COORDINATED_OMISSION = Boolean.getBoolean("coordinatedOmission"); 
  8.     //Either run testing Lock or testing synchronized 
  9.     private static final boolean IS_LOCK = Boolean.getBoolean("isLock"); 
  10.     private static final int NUM_THREADS = Integer.getInteger("numThreads"); 
  11.  
  12.     <a href='http://www.jobbole.com/members/madao'>@Test</a> 
  13.     public void test() throws InterruptedException { 
  14.         Lock lock = new ReentrantLock(); 
  15.         for (int t = 0; t &lt; NUM_THREADS; t++) { 
  16.             if (t == 0) { 
  17.                 //Set the first thread as the master which will be measured 
  18.                 //设置第一个线程作为测量的线程 
  19.                 //The other threads are only to cause contention 
  20.                 //其他线程只是引起竞争 
  21.                 Runner r = new Runner(lock, true); 
  22.                 r.start(); 
  23.             } else { 
  24.                 Runner r = new Runner(lock, false); 
  25.                 r.start(); 
  26.             } 
  27.         } 
  28.  
  29.         synchronized(this){ 
  30.             //Hold the main thread from completing 
  31.             wait(); 
  32.         } 
  33.  
  34.     } 
  35.  
  36.     private void testLock(Lock rlock) { 
  37.         rlock.lock(); 
  38.         try { 
  39.             for (int i = 0; i &lt; 2; i++) { 
  40.                 double x = 10 / 4.5 + i; 
  41.             } 
  42.         } finally { 
  43.             rlock.unlock(); 
  44.         } 
  45.     } 
  46.  
  47.     private synchronized void testSync() { 
  48.         for (int i = 0; i &lt; 2; i++) { 
  49.             double x = 10 / 4.5 + i; 
  50.         } 
  51.     } 
  52.  
  53.     class Runner extends Thread { 
  54.         private Lock lock; 
  55.         private boolean master; 
  56.  
  57.         public Runner(Lock lock, boolean master) { 
  58.             this.lock = lock; 
  59.             this.master = master; 
  60.         } 
  61.  
  62.         @Override 
  63.         public void run() { 
  64.             Histogram histogram = null
  65.             if (master) 
  66.                 histogram = new Histogram(); 
  67.  
  68.             long rate = 1000;//expect 1 every microsecond 
  69.             long now =0
  70.             for (int i = -10000; i 0){ 
  71.                     if(!COORDINATED_OMISSION) { 
  72.                         now += rate; 
  73.                         while(System.nanoTime() =0 &amp;&amp; master){ 
  74.                     histogram.sample(System.nanoTime() - now); 
  75.                 } 
  76.             } 
  77.             if (master) { 
  78.                 System.out.println(histogram.toMicrosFormat()); 
  79.                 System.exit(0); 
  80.             } 
  81.         } 
  82.     } 

结果如下:

这是没有遗漏(co-ordinated omission)的结果:

  • 采用微秒来衡量。

  • 图形的顶部就是延迟的分布。

  • 这是有竞争的测试,使用四个线程执行该程序。

  • 这个测试是在8核的 MBP i7 上运行的。

  • 每次测试迭代200,000,000次,并有10,000次预热。

  • 根据吞吐率为每微妙迭代一次来调整遗漏。

Java延时实例分析:Lock vs Synchronized

如我们所期望的一样,没有竞争时,结果是基本相同的。JIT 已经对 Lock 和 synchronized 进行了优化。在有竞争的情况下,占用百分比低的时候,使用 Lock 会稍微快一点,但是这种差别真的很小。所以,即使存在很多的年青代GC(minor GC),它们也没有显著的降低 Lock 效率。如果都是轻量级的 Lock,总体上就比较快了。

这是调整为有遗漏情况后的结果。

Java延时实例分析:Lock vs Synchronized

当然,在有遗漏的情况下延迟会更高。

再次可以看到,在无竞争情况下,lock 和 synchronized 的性能是相同——这就没什么很惊奇了。

在竞争条件下,百分率为99%时,我们看到 synchronized 比 lock 表现好10X。在这之后,两者的表现基本是一致的。

我猜测这是因为GC回收的效率导致 lock 比 synchronised 要慢,大概每300-1200微妙发生一次GC回收。尤其是到达99%之后,慢得就相当明显了。在这个之后,延迟率可能与硬件和操作系统(OS)相关。但 是,这只是我个人的推断,没有做更深入的调查。

结论:

这篇文章更多的是怎么去测量和分析延迟。在竞争条件下,Lock的分配是一个非常有意思的话题,在真实世界里,这个问题也未必有什么实际的不同。


来源:51CTO

相关文章
|
19天前
|
设计模式 安全 Java
Java并发编程实战:使用synchronized关键字实现线程安全
【4月更文挑战第6天】Java中的`synchronized`关键字用于处理多线程并发,确保共享资源的线程安全。它可以修饰方法或代码块,实现互斥访问。当用于方法时,锁定对象实例或类对象;用于代码块时,锁定指定对象。过度使用可能导致性能问题,应注意避免锁持有时间过长、死锁,并考虑使用`java.util.concurrent`包中的高级工具。正确理解和使用`synchronized`是编写线程安全程序的关键。
|
14天前
|
Java 调度
Java中常见锁的分类及概念分析
Java中常见锁的分类及概念分析
15 0
|
1月前
|
Java
java面向对象高级分层实例_实体类
java面向对象高级分层实例_实体类
10 1
|
14天前
|
Java
Java中ReentrantLock中tryLock()方法加锁分析
Java中ReentrantLock中tryLock()方法加锁分析
12 0
|
1月前
|
人工智能 监控 算法
java智慧城管源码 AI视频智能分析 可直接上项目
Java智慧城管源码实现AI视频智能分析,适用于直接部署项目。系统运用互联网、大数据、云计算和AI提升城市管理水平,采用“一级监督、二级指挥、四级联动”模式。功能涵盖AI智能检测(如占道广告、垃圾处理等)、执法办案、视频分析、统计分析及队伍管理等多个模块,利用深度学习优化城市管理自动化和智能化,提供决策支持。
221 4
java智慧城管源码 AI视频智能分析 可直接上项目
|
1天前
|
安全 Java 编译器
是时候来唠一唠synchronized关键字了,Java多线程的必问考点!
本文简要介绍了Java中的`synchronized`关键字,它是用于保证多线程环境下的同步,解决原子性、可见性和顺序性问题。从JDK1.6开始,synchronized进行了优化,性能得到提升,现在仍可在项目中使用。synchronized有三种用法:修饰实例方法、静态方法和代码块。文章还讨论了synchronized修饰代码块的锁对象、静态与非静态方法调用的互斥性,以及构造方法不能被同步修饰。此外,通过反汇编展示了`synchronized`在方法和代码块上的底层实现,涉及ObjectMonitor和monitorenter/monitorexit指令。
6 0
|
6天前
|
安全 Java 开发者
Java并发编程:深入理解Synchronized关键字
【4月更文挑战第19天】 在Java多线程编程中,为了确保数据的一致性和线程安全,我们经常需要使用到同步机制。其中,`synchronized`关键字是最为常见的一种方式,它能够保证在同一时刻只有一个线程可以访问某个对象的特定代码段。本文将深入探讨`synchronized`关键字的原理、用法以及性能影响,并通过具体示例来展示如何在Java程序中有效地应用这一技术。
|
8天前
|
Java
浅谈Java的synchronized 锁以及synchronized 的锁升级
浅谈Java的synchronized 锁以及synchronized 的锁升级
8 0
|
11天前
|
Java Android开发 C++
Kotlin vs Java:选择最佳语言进行安卓开发
【4月更文挑战第13天】Java曾是安卓开发的主流语言,但Kotlin的崛起改变了这一局面。Google在2017年支持Kotlin,引发两者优劣讨论。Java以其成熟稳定、强大生态和跨平台能力占优,但代码冗长、开发效率低和语言特性过时是短板。Kotlin则以简洁语法、空安全设计和高度兼容Java脱颖而出,但社区和生态系统仍在发展中,可能存在学习曲线和性能问题。选择语言应考虑项目需求、团队熟悉度、维护性、性能和生态系统。无论选择哪种,理解其差异并适应新技术至关重要。
|
12天前
|
Java Shell
Java 21颠覆传统:未命名类与实例Main方法的编码变革
Java 21颠覆传统:未命名类与实例Main方法的编码变革
13 0