如何在Go语言中使用Redis连接池

本文涉及的产品
云数据库 Redis 版,社区版 2GB
推荐场景:
搭建游戏排行榜
简介:

一、关于连接池

一个数据库服务器只拥有有限的资源,并且如果你没有充分使用这些资源,你可以通过使用更多的连接来提高吞吐量。一旦所有的资源都在使用,那么你就不 能通过增加更多的连接来提高吞吐量。事实上,吞吐量在连接负载较大时就开始下降了。通常可以通过限制与可用的资源相匹配的数据库连接的数量来提高延迟和吞 吐量。

如果不使用连接池,那么,每次传输数据,我们都需要进行创建连接,收发数据,关闭连接。在并发量不高的场景,基本上不会有什么问题,一旦并发量上去了,那么,一般就会遇到下面几个常见问题:

  • 性能普遍上不去

  • CPU 大量资源被系统消耗

  • 网络一旦抖动,会有大量 TIME_WAIT 产生,不得不定期重启服务或定期重启机器

  • 服务器工作不稳定,QPS 忽高忽低

要想解决这些问题,我们就要用到连接池了。连接池的思路很简单,在初始化时,创建一定数量的连接,先把所有长连接存起来,然后,谁需要使用,从这里取走,干完活立马放回来。 如果请求数超出连接池容量,那么就排队等待、退化成短连接或者直接丢弃掉。

二、使用连接池遇到的坑

最近在一个项目中,需要实现一个简单的 Web Server 提供 Redis 的 HTTP interface,提供 JSON 形式的返回结果。考虑用 Go 来实现。

首先,去看一下 Redis 官方推荐的 Go Redis driver。官方 Star 的项目有两个:Radix.v2 和 Redigo。经过简单的比较后,选择了更加轻量级和实现更加优雅的 Radix.v2。

Radix.v2 包是根据功能划分成一个个的 sub package,每一个 sub package 在一个独立的子目录中,结构非常清晰。我的项目中会用到的 sub package 有 redis 和 pool。

由于我想让这种被 fork 的进程最好简单点,做的事情单一一些,所以,在没有深入去看 Radix.v2 的 pool 的实现之前,我选择了自己实现一个 Redis pool。(这里,就不贴代码了。后来发现自己实现的 Redis pool 与 Radix.v2 实现的 Redis pool 的原理是一样的,都是基于 channel 实现的, 遇到的问题也是一样的。)

不过在测试过程中,发现了一个诡异的问题。在请求过程中经常会报 EOF 错误。而且是概率性出现,一会有问题,一会又好了。通过反复的测试,发现 bug 是有规律的,当程序空闲一会后,再进行连续请求,会发生3次失败,然后之后的请求都能成功,而我的连接池大小设置的是3。再进一步分析,程序空闲300秒 后,再请求就会失败,发现我的 Redis server 配置了 timeout 300,至此,问题就清楚了。是连接超时 Redis server 主动断开了连接。客户端这边从一个超时的连接请求就会得到 EOF 错误。

然后我看了一下 Radix.v2 的 pool 包的源码,发现这个库本身并没有检测坏的连接,并替换为新的连接的机制。也就是说我每次从连接池里面 Get 的连接有可能是坏的连接。所以,我当时临时的解决方案是通过增加失败后自动重试来解决了。不过,这样的处理方案,连接池的作用好像就没有了。技术债能早点 还的还是早点还上。

三、使用连接池的正确姿势

想到我们的 ngx_lua 项目里面也大量使用 redis 连接池,他们怎么没有遇到这个问题呢。只能去看看源码了。

经过抽象分离, ngx_lua 里面使用 redis 连接池部分的代码大致是这样的:

 
  1. server { 
  2.     location /pool { 
  3.         content_by_lua_block { 
  4.             local redis = require "resty.redis" 
  5.             local red = redis:new() 
  6.  
  7.             local ok, err = red:connect("127.0.0.1"6379
  8.             if not ok then 
  9.                 ngx.say("failed to connect: ", err) 
  10.                 return 
  11.             end 
  12.  
  13.             ok, err = red:set("hello""world"
  14.             if not ok then 
  15.                 return 
  16.             end 
  17.  
  18.             red:set_keepalive(10000100
  19.         } 
  20.     } 

发现有个 set_keepalive 的方法,查了一下官方文档,方法的原型是 syntax: ok, err = red:set_keepalive(max_idle_timeout, pool_size) 貌似 max_idle_timeout 这个参数,就是我们所缺少的东西,然后进一步跟踪源码,看看里面是怎么保证连接有效的。

 
  1. function _M.set_keepalive(self, ...) 
  2.     local sock = self.sock 
  3.     if not sock then 
  4.         return nil, "not initialized" 
  5.     end 
  6.  
  7.     if self.subscribed then 
  8.         return nil, "subscribed state" 
  9.     end 
  10.  
  11.     return sock:setkeepalive(...) 
  12. end 

至此,已经清楚了,使用了 tcp 的 keepalive 心跳机制。

于是,通过与 Radix.v2 的作者一些讨论,选择自己在 redis 这层使用心跳机制,来解决这个问题。

四、最后的解决方案

在创建连接池之后,起一个 goroutine,每隔一段 idleTime 发送一个 PING 到 Redis server。其中,idleTime 略小于 Redis server 的 timeout 配置。
连接池初始化部分代码如下:

 
  1. p, err := pool.New("tcp", u.Host, concurrency) 
  2. errHndlr(err) 
  3. go func() { 
  4.     for { 
  5.         p.Cmd("PING"
  6.         time.Sleep(idelTime * time.Second) 
  7.     } 
  8. }() 

使用 redis 传输数据部分代码如下:

 
  1. func redisDo(p *pool.Pool, cmd string, args ...interface{}) (reply *redis.Resp, err error) { 
  2.     reply = p.Cmd(cmd, args...) 
  3.     if err = reply.Err; err != nil { 
  4.         if err != io.EOF { 
  5.             Fatal.Println("redis", cmd, args, "err is", err) 
  6.         } 
  7.     } 
  8.  
  9.     return 

其中,Radix.v2 连接池内部进行了连接池内连接的获取和放回,代码如下:

 
  1. // Cmd automatically gets one client from the pool, executes the given command 
  2. // (returning its result), and puts the client back in the pool 
  3. func (p *Pool) Cmd(cmd string, args ...interface{}) *redis.Resp { 
  4.     c, err := p.Get() 
  5.     if err != nil { 
  6.         return redis.NewResp(err) 
  7.     } 
  8.     defer p.Put(c) 
  9.  
  10.     return c.Cmd(cmd, args...) 

这样,我们就有了 keepalive 的机制,不会出现 timeout 的连接了,从 redis 连接池里面取出的连接都是可用的连接了。看似简单的代码,却完美的解决了连接池里面超时连接的问题。同时,就算 Redis server 重启等情况,也能保证连接自动重连。


来源:51CTO

相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore     ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库 ECS 实例和一台目标数据库 RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
1天前
|
缓存 测试技术 持续交付
Golang深入浅出之-Go语言中的持续集成与持续部署(CI/CD)
【5月更文挑战第5天】本文介绍了Go语言项目中的CI/CD实践,包括持续集成与持续部署的基础知识,常见问题及解决策略。测试覆盖不足、版本不一致和构建时间过长是主要问题,可通过全面测试、统一依赖管理和利用缓存优化。文中还提供了使用GitHub Actions进行自动化测试和部署的示例,强调了持续优化CI/CD流程以适应项目需求的重要性。
29 1
|
1天前
|
Kubernetes Cloud Native Go
Golang深入浅出之-Go语言中的云原生开发:Kubernetes与Docker
【5月更文挑战第5天】本文探讨了Go语言在云原生开发中的应用,特别是在Kubernetes和Docker中的使用。Docker利用Go语言的性能和跨平台能力编写Dockerfile和构建镜像。Kubernetes,主要由Go语言编写,提供了方便的客户端库与集群交互。文章列举了Dockerfile编写、Kubernetes资源定义和服务发现的常见问题及解决方案,并给出了Go语言构建Docker镜像和与Kubernetes交互的代码示例。通过掌握这些技巧,开发者能更高效地进行云原生应用开发。
28 1
|
1天前
|
负载均衡 监控 Go
Golang深入浅出之-Go语言中的服务网格(Service Mesh)原理与应用
【5月更文挑战第5天】服务网格是处理服务间通信的基础设施层,常由数据平面(代理,如Envoy)和控制平面(管理配置)组成。本文讨论了服务发现、负载均衡和追踪等常见问题及其解决方案,并展示了使用Go语言实现Envoy sidecar配置的例子,强调Go语言在构建服务网格中的优势。服务网格能提升微服务的管理和可观测性,正确应对问题能构建更健壮的分布式系统。
17 1
|
2天前
|
消息中间件 Go API
Golang深入浅出之-Go语言中的微服务架构设计与实践
【5月更文挑战第4天】本文探讨了Go语言在微服务架构中的应用,强调了单一职责、标准化API、服务自治和容错设计等原则。同时,指出了过度拆分、服务通信复杂性、数据一致性和部署复杂性等常见问题,并提出了DDD拆分、使用成熟框架、事件驱动和配置管理与CI/CD的解决方案。文中还提供了使用Gin构建HTTP服务和gRPC进行服务间通信的示例。
14 0
|
2天前
|
Prometheus 监控 Cloud Native
Golang深入浅出之-Go语言中的分布式追踪与监控系统集成
【5月更文挑战第4天】本文探讨了Go语言中分布式追踪与监控的重要性,包括追踪的三个核心组件和监控系统集成。常见问题有追踪数据丢失、性能开销和监控指标不当。解决策略涉及使用OpenTracing或OpenTelemetry协议、采样策略以及聚焦关键指标。文中提供了OpenTelemetry和Prometheus的Go代码示例,强调全面可观测性对微服务架构的意义,并提示选择合适工具和策略以确保系统稳定高效。
14 5
|
2天前
|
监控 算法 Go
Golang深入浅出之-Go语言中的服务熔断、降级与限流策略
【5月更文挑战第4天】本文探讨了分布式系统中保障稳定性的重要策略:服务熔断、降级和限流。服务熔断通过快速失败和暂停故障服务调用来保护系统;服务降级在压力大时提供有限功能以保持整体可用性;限流控制访问频率,防止过载。文中列举了常见问题、解决方案,并提供了Go语言实现示例。合理应用这些策略能增强系统韧性和可用性。
17 0
|
2天前
|
负载均衡 算法 Go
Golang深入浅出之-Go语言中的服务注册与发现机制
【5月更文挑战第4天】本文探讨了Go语言中服务注册与发现的关键原理和实践,包括服务注册、心跳机制、一致性问题和负载均衡策略。示例代码演示了使用Consul进行服务注册和客户端发现服务的实现。在实际应用中,需要解决心跳失效、注册信息一致性和服务负载均衡等问题,以确保微服务架构的稳定性和效率。
12 3
|
2天前
|
中间件 Go
Go语言中的中间件设计与实现
【5月更文挑战第4天】Go语言中的中间件在HTTP请求处理中扮演重要角色,提供了一种插入逻辑层的方式,便于实现日志、认证和限流等功能,而不增加核心代码复杂性。中间件遵循`http.Handler`接口,通过函数组合实现。常见问题包括错误处理(确保中间件能正确处理并传递错误)和请求上下文管理(使用`context.Context`共享数据以避免并发问题)。通过理解中间件机制和最佳实践,可以构建更健壮的Web应用。
19 0
|
3天前
|
前端开发 Go
Golang深入浅出之-Go语言中的异步编程与Future/Promise模式
【5月更文挑战第3天】Go语言通过goroutines和channels实现异步编程,虽无内置Future/Promise,但可借助其特性模拟。本文探讨了如何使用channel实现Future模式,提供了异步获取URL内容长度的示例,并警示了Channel泄漏、错误处理和并发控制等常见问题。为避免这些问题,建议显式关闭channel、使用context.Context、并发控制机制及有效传播错误。理解并应用这些技巧能提升Go语言异步编程的效率和健壮性。
15 5
Golang深入浅出之-Go语言中的异步编程与Future/Promise模式
|
3天前
|
监控 负载均衡 算法
Golang深入浅出之-Go语言中的协程池设计与实现
【5月更文挑战第3天】本文探讨了Go语言中的协程池设计,用于管理goroutine并优化并发性能。协程池通过限制同时运行的goroutine数量防止资源耗尽,包括任务队列和工作协程两部分。基本实现思路涉及使用channel作为任务队列,固定数量的工作协程处理任务。文章还列举了一个简单的协程池实现示例,并讨论了常见问题如任务队列溢出、协程泄露和任务调度不均,提出了解决方案。通过合理设置缓冲区大小、确保资源释放、优化任务调度以及监控与调试,可以避免这些问题,提升系统性能和稳定性。
16 6