一篇卷积神经网络的编年史

简介:

人工神经网络模型整体上的发展过程如下图所示:

一篇卷积神经网络的编年史

一篇卷积神经网络的编年史

上图对比了本文所述的各种神经网络之间,操作复杂度和精度之间的关系。

  LeNet5

1998, Yann LeCun 的 LeNet5。

图像特征分布在整个图像上。 

在具有很少参数的多个位置上提取类似特征时,具有可学习的参数的卷积是个比较有效的方法。 

在没有应用GPU的时候,能够保存参数和计算就成了一个关键优势。 

LeNet5并没有把每个像素都作为大型多层神经网络的一个输入,因为图像是高度空间相关的,如果用了这种方法,就不能很好地利用相关性。

LeNet5 的主要特征:

  • CNN 主要用这3层的序列: convolution, pooling, non-linearity;

  • 用卷积提取空间特征;

  • 由空间平均得到子样本;

  • 用 tanh 或 sigmoid 得到非线性;

  • 用 multi-layer neural network(MLP)作为最终分类器;

  • 层层之间用稀疏的连接矩阵,以避免大的计算成本。

一篇卷积神经网络的编年史

  Dan Ciresan Net

2010, Dan Claudiu Ciresan and Jurgen Schmidhuber 的 Dan Ciresan Net。

是比较早的GPU神经网络之一,在 NVIDIA GTX 280 图形处理器上实现了9层神经网络的前向后向计算。

  AlexNet

2012,Alex Krizhevsky 的 AlexNet。

是LeNet的一个更深和更广的版本,可以用来学习更复杂的对象。

AlexNet 的主要特征:

  • 用rectified linear units(ReLU)得到非线性;

  • 使用辍 dropout 技巧在训练期间有选择性地忽略单个神经元,来减缓模型的过拟合;

  • 重叠最大池,避免平均池的平均效果;

  • 使用 GPU NVIDIA GTX 580 可以减少训练时间,这比用CPU处理快了 10 倍,所以可以被用于更大的数据集和图像上。

一篇卷积神经网络的编年史

  OverFeat

2013年12月,Yann LeCun的纽约大学实验室的 OverFeat。

是AlexNet的衍生,提出了 learning bounding boxes。

  VGG

2015,牛津的 VGG。

率先在每个卷积层中使用更小的 3×3 filters,并将它们组合成卷积序列。

虽然小,但是多个3×3卷积序列可以模拟更大的接收场的效果。

这个想法也在最近的Inception和ResNet网络中有所应用。

  NiN

2014,Min Lin, Qiang Chen, Shuicheng Yan 的 NiN。

它的思想很简单但是很有效,使用1x1卷积给一个卷积层的特征提供了更多的组合性。

每个卷积之后使用空间MLP层,以便在另一层之前更好地组合特征,而没有使用原始像素作为下一层的输入。

可以有效地使用非常少的参数,在这些特征的所有像素之间共享。

一篇卷积神经网络的编年史

  GoogLeNet and Inception

2014,Google Christian Szegedy 的 GoogLeNet and Inception。

在昂贵的并行块之前,使用1×1卷积块(NiN)来减少特征数量,这通常被称为“瓶颈”,可以减少深层神经网络的计算负担。

它用一个没有 inception modules 的 stem 作为初始层。

用类似于NiN的平均池加上softmax分类器。

一篇卷积神经网络的编年史

  Inception V3 (and V2)

2015年2月,Christian 团队的 Inception V2,2015年12月,Inception V3。

在每个池之前,增加 feature maps,构建网络时,仔细平衡深度和宽度,使流入网络的信息最大化。

当深度增加时,特征的数量或层的宽度也有所增加。

在下一层之前,增加每一层的宽度来增多特征的组合性。

尽量只使用3x3卷积。

一篇卷积神经网络的编年史

  ResNet

2015,Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun 的 ResNet。

这个网络绕过了2层,可以被看作一个小的分类器,或者一个NiN 。

这也是第一次训练了大于100甚至1000层的网络。 

在每一层,通过使用更小output的1x1卷积来减少特征的数量,然后经过一个3x3 层,接着又是一个1x1卷积,这个方法可以保持少计算量,同时提供丰富的特征组合。

一篇卷积神经网络的编年史

  Xception

2016,François Chollet 的 Xception。

这个网络和 ResNet and Inception V4 一样有效,而且用了更简单优雅的结构 。

它有36个卷积阶段,和ResNet-34相似,不过模型和代码和ResNet一样简单,并且比Inception V4更易理解 。

这个网络在 Torch7/Keras / TF 都已经可以应用了。

一篇卷积神经网络的编年史

英文参考:

http://t.cn/R6V1ELT




====================================分割线================================


本文作者:AI研习社

本文转自雷锋网禁止二次转载,原文链接

目录
打赏
0
0
0
0
26198
分享
相关文章
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
66 3
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
基于GA遗传优化TCN-GRU时间卷积神经网络时间序列预测算法matlab仿真
本项目基于MATLAB2022a开发,提供无水印算法运行效果预览及核心程序(含详细中文注释与操作视频)。通过结合时间卷积神经网络(TCN)和遗传算法(GA),实现复杂非线性时间序列的高精度预测。TCN利用因果卷积层与残差连接提取时间特征,GA优化超参数(如卷积核大小、层数等),显著提升模型性能。项目涵盖理论概述、程序代码及完整实现流程,适用于金融、气象、工业等领域的时间序列预测任务。
基于GA遗传优化TCN时间卷积神经网络时间序列预测算法matlab仿真
本内容介绍了一种基于遗传算法优化的时间卷积神经网络(TCN)用于时间序列预测的方法。算法运行于 Matlab2022a,完整程序无水印,附带核心代码、中文注释及操作视频。TCN通过因果卷积层与残差连接学习时间序列复杂特征,但其性能依赖超参数设置。遗传算法通过对种群迭代优化,确定最佳超参数组合,提升预测精度。此方法适用于金融、气象等领域,实现更准确可靠的未来趋势预测。
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
害虫识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了12种常见的害虫种类数据集【"蚂蚁(ants)", "蜜蜂(bees)", "甲虫(beetle)", "毛虫(catterpillar)", "蚯蚓(earthworms)", "蜚蠊(earwig)", "蚱蜢(grasshopper)", "飞蛾(moth)", "鼻涕虫(slug)", "蜗牛(snail)", "黄蜂(wasp)", "象鼻虫(weevil)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Djan
126 1
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)", "毒鹅膏菌(Amanita)", "牛肝菌(Boletus)", "网状菌(Cortinarius)", "毒镰孢(Entoloma)", "湿孢菌(Hygrocybe)", "乳菇(Lactarius)", "红菇(Russula)", "松茸(Suillus)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,
159 11
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
YOLOv11改进策略【Neck】| GSConv+Slim Neck:混合深度可分离卷积和标准卷积的轻量化网络设计
YOLOv11改进策略【Neck】| GSConv+Slim Neck:混合深度可分离卷积和标准卷积的轻量化网络设计
143 8
YOLOv11改进策略【Neck】| GSConv+Slim Neck:混合深度可分离卷积和标准卷积的轻量化网络设计
RT-DETR改进策略【Conv和Transformer】| TPAMI-2024 Conv2Former 利用卷积调制操作和大核卷积简化自注意力机制,提高网络性能
RT-DETR改进策略【Conv和Transformer】| TPAMI-2024 Conv2Former 利用卷积调制操作和大核卷积简化自注意力机制,提高网络性能
52 5
RT-DETR改进策略【Conv和Transformer】| TPAMI-2024 Conv2Former 利用卷积调制操作和大核卷积简化自注意力机制,提高网络性能
基于GA遗传优化TCN-LSTM时间卷积神经网络时间序列预测算法matlab仿真
本项目基于MATLAB 2022a实现了一种结合遗传算法(GA)优化的时间卷积神经网络(TCN)时间序列预测算法。通过GA全局搜索能力优化TCN超参数(如卷积核大小、层数等),显著提升模型性能,优于传统GA遗传优化TCN方法。项目提供完整代码(含详细中文注释)及操作视频,运行后无水印效果预览。 核心内容包括:1) 时间序列预测理论概述;2) TCN结构(因果卷积层与残差连接);3) GA优化流程(染色体编码、适应度评估等)。最终模型在金融、气象等领域具备广泛应用价值,可实现更精准可靠的预测结果。
RT-DETR改进策略【Neck】| GSConv+Slim Neck:混合深度可分离卷积和标准卷积的轻量化网络设计
RT-DETR改进策略【Neck】| GSConv+Slim Neck:混合深度可分离卷积和标准卷积的轻量化网络设计
96 11
RT-DETR改进策略【模型轻量化】| PP-LCNet:轻量级的CPU卷积神经网络
RT-DETR改进策略【模型轻量化】| PP-LCNet:轻量级的CPU卷积神经网络
80 0
RT-DETR改进策略【模型轻量化】| PP-LCNet:轻量级的CPU卷积神经网络

雷锋网

+ 订阅
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等