PgSQL · 最佳实践 · CPU满问题处理

本文涉及的产品
云原生数据库 PolarDB MySQL 版,Serverless 5000PCU 100GB
云原生数据库 PolarDB 分布式版,标准版 2核8GB
云数据库 RDS MySQL Serverless,0.5-2RCU 50GB
简介: 前言在数据库运维当中,一个DBA比较常遇到又比较紧急的问题,就是突发的CPU满(CPU利用率达到100%),导致业务停滞。DBA不一定非常熟悉业务实现逻辑,也不能掌控来自应用的变更或负载变化情况。 所以,遇到CPU满,往往只能从后端数据库开始排查,追溯到具体SQL,最终定位到业务层。这里我们总结下这个问题具体的处理方法。查看连接数变化CPU利用率到达100%,首先怀疑,是不是业务高峰活

前言

在数据库运维当中,一个DBA比较常遇到又比较紧急的问题,就是突发的CPU满(CPU利用率达到100%),导致业务停滞。DBA不一定非常熟悉业务实现逻辑,也不能掌控来自应用的变更或负载变化情况。 所以,遇到CPU满,往往只能从后端数据库开始排查,追溯到具体SQL,最终定位到业务层。这里我们总结下这个问题具体的处理方法。

查看连接数变化

CPU利用率到达100%,首先怀疑,是不是业务高峰活跃连接陡增,而数据库预留的资源不足造成的结果。我们需要查看下,问题发生时,活跃的连接数是否比平时多很多。对于RDS for PG,数据库上的连接数变化,可以从控制台的监控信息中看到。而当前活跃的连接数可以直接连接数据库,使用下列查询语句得到:

select count( * ) from pg_stat_activity where state not like '%idle';

追踪慢SQL

如果活跃连接数的变化处于正常范围,则很大概率可能是当时有性能很差的SQL被大量执行导致。由于RDS有慢SQL日志,我们可以通过这个日志,定位到当时比较耗时的SQL来进一步做分析。但通常问题发生时,整个系统都处于停滞状态,所有SQL都慢下来,当时记录的慢SQL可能非常多,并不容易排查罪魁祸首。这里我们介绍几种在问题发生时,即介入追查慢SQL的方法。

1. 第一种方法是使用pg_stat_statements插件定位慢SQL,步骤如下。

1.1. 如果没有创建这个插件,需要手动创建。我们要利用插件和数据库系统里面的计数信息(如SQL执行时间累积等),而这些信息是不断累积的,包含了历史信息。为了更方便的排查当前的CPU满问题,我们要先重置计数器。

create extension pg_stat_statements;
select pg_stat_reset();
select pg_stat_statements_reset();

1.2. 等待一段时间(例如1分钟),使计数器积累足够的信息。

1.3. 查询最耗时的SQL(一般就是导致问题的直接原因)。

select * from pg_stat_statements order by total_time desc limit 5;

1.4. 查询读取Buffer次数最多的SQL,这些SQL可能由于所查询的数据没有索引,而导致了过多的Buffer读,也同时大量消耗了CPU。

select * from pg_stat_statements order by shared_blks_hit+shared_blks_read desc limit 5;

2. 第二种方法是,直接通过pg_stat_activity视图,利用下面的查询,查看当前长时间执行,一直不结束的SQL。这些SQL对应造成CPU满,也有直接嫌疑。

 select datname, usename, client_addr, application_name, state, backend_start, xact_start, xact_stay, query_start, query_stay, replace(query, chr(10), ' ') as query from (select pgsa.datname as datname, pgsa.usename as usename, pgsa.client_addr client_addr, pgsa.application_name as application_name, pgsa.state as state, pgsa.backend_start as backend_start, pgsa.xact_start as xact_start, extract(epoch from (now() - pgsa.xact_start)) as xact_stay, pgsa.query_start as query_start, extract(epoch from (now() - pgsa.query_start)) as query_stay , pgsa.query as query from pg_stat_activity as pgsa where pgsa.state != 'idle' and pgsa.state != 'idle in transaction' and pgsa.state != 'idle in transaction (aborted)') idleconnections order by query_stay desc limit 5;

3. 第3种方法,是从数据表上表扫描(Table Scan)的信息开始查起,查找缺失索引的表。数据表如果缺失索引,大部分热数据又都在内存时(例如内存8G,热数据6G),此时数据库只能使用表扫描,并需要处理已在内存中的大量的无关记录,而耗费大量CPU。特别是对于表记录数超100的表,一次表扫描占用大量CPU(基本把一个CPU占满),多个连接并发(例如上百连接),把所有CPU占满。

3.1. 通过下面的查询,查出使用表扫描最多的表:

select * from pg_stat_user_tables where n_live_tup > 100000 and seq_scan > 0 order by seq_tup_read desc limit 10;

3.2. 查询当前正在运行的访问到上述表的慢查询:

select * from pg_stat_activity where query ilike '%<table name>%' and query_start - now() > interval '10 seconds';

3.3. 也可以通过pg_stat_statements插件定位涉及到这些表的查询:

select * from pg_stat_statements where query ilike '%<table>%'order by shared_blks_hit+shared_blks_read desc limit 3;

处理慢SQL

对于上面的方法查出来的慢SQL,首先需要做的可能是Cancel或Kill掉他们,使业务先恢复:

select pg_cancel_backend(pid) from pg_stat_activity where  query like '%<query text>%' and pid != pg_backend_pid();
select pg_terminate_backend(pid) from pg_stat_activity where  query like '%<query text>%' and pid != pg_backend_pid();

如果这些SQL确实是业务上必需的,则需要对他们做优化。这方面有“三板斧”:

1. 对查询涉及的表,执行ANALYZE <table>或VACUUM ANZLYZE <table>,更新表的统计信息,使查询计划更准确。注意,为避免对业务影响,最好在业务低峰执行。

2. 执行explain 或explain (buffers true, analyze true, verbose true) 命令,查看SQL的执行计划(注意,前者不会实际执行SQL,后者会实际执行而且能得到详细的执行信息),对其中的Table Scan涉及的表,建立索引。

3. 重新编写SQL,去除掉不必要的子查询、改写UNION ALL、使用JOIN CLAUSE固定连接顺序等到,都是进一步深度优化SQL的手段,这里不再深入说明。

总结

需要说明的是,这些方法对于RDS for PPAS产品同样适用,但在使用我们所列的命令时,由于权限限制,需要把上面提到的视图、函数、命令做如下转换:

pg_stat_statements_reset() => rds_pg_stat_statements_reset()

pg_stat_statements => rds_pg_stat_statements()

pg_stat_reset() => rds_pg_stat_reset()

pg_cancel_backend() => rds_pg_cancel_backend()

pg_terminate_backend() => rds_pg_terminate_backend()

pg_stat_activity => rds_pg_stat_activity()

create extension pg_stat_statements => rds_manage_extension('create', 'pg_stat_statements')

上面我们分析了处理CPU满,追查问题SQL的一些方法。大家可以按部就班的尝试我们列出的命令,定位问题。

相关实践学习
基于CentOS快速搭建LAMP环境
本教程介绍如何搭建LAMP环境,其中LAMP分别代表Linux、Apache、MySQL和PHP。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
目录
相关文章
|
Oracle 关系型数据库 数据库
PgSQL · 最佳实践 · pg_rman源码浅析与使用
背景 对于商业数据库来说,备份的功能一般都非常的全面。 比如Oracle,它的备份工具rman是非常强大的,很多年前就已经支持全量、增量、归档的备份模式,支持压缩等。 还支持元数据存储到数据库中,管理也非常的方便,例如保留多少归档,备份集的管理也很方便,例如要恢复到什么时间点,将此前的备份清除等等。 对于开源数据库来说,支持向商业版本这么丰富功能的比较少,PostgreSQ
3095 0
|
SQL 数据库 数据格式
MSSQL · 最佳实践 · 数据库备份链
在SQL Server备份专题分享中,前两期我们分享了三种常见的备份以及备份策略的制定,在第三期分享中,我们将要分享SQL Server的数据库备份链。完整的数据库备份链是保证数据库能够实现灾难恢复的基础,如果备份链条被打断或者备份链条上的文件损坏,势必会导致数据恢复不完整或者不能满足预期,而造成数据丢失,危害数据完整性生命线,后果非常严重。
2062 0
|
SQL 监控 Go
MSSQL · 应用案例 · 日志表设计优化与实现
摘要 这篇文章从日志表问题引入、日志表的共有特性、日志表的设计需求、设计思路以及设计详细实现的角度,阐述了在SQL Server数据库中如何最优化设计日志表来降低系统资源的占用和提高系统吞吐量。问题引入 在平时与客户服务与交流过程中,我们不止一次的被客人问及这样的场景:我们现在面临如何设计SQL Server日志表方案,如何最优化设计数据库日志记录表。
1471 0
PgSQL · 最佳实践 · 云上的数据迁移
--- title: PgSQL · 最佳实践 · 云上的数据迁移 author: 义从 --- ## 背景 大多数使用云产品作为 IT 解决方案的客户同时使用多款云产品是一个普遍现象。
3162 0
|
新零售 存储 监控
PgSQL · 应用案例 · "写入、共享、存储、计算" 最佳实践
背景 数据是为业务服务的,业务方为了更加透彻的掌握业务本身或者使用该业务的群体,往往会收集,或者让应用埋点,收集更多的日志。 随着用户量、用户活跃度的增长,时间的积累等,数据产生的速度越来越快,数据堆积的量越来越大,数据的维度越来越多,数据类型越来越多,数据孤岛也越来越多。 日积月累,给企业IT带来诸多负担,IT成本不断增加,收益确不见得有多高。 上图描绘了企业中可能存在的问题: 1.
3084 0
|
存储 缓存 关系型数据库
PgSQL · 代码浅析 · PostgreSQL 可靠性分析
背景 PostgreSQL 可靠性与大多数关系数据库一样,都是通过REDO来保障的。 群里有位童鞋问了一个问题,为什么PostgreSQL的REDO块大小默认是8K的,不是512字节。 这位童鞋提问的理由是,大多数的块设备扇区大小是512字节的,512字节可以保证原子写,而如果REDO的块大于512字节,可能会出现partial write。 那么PostgreSQL的redo(wal) 块
2330 0
|
算法 物联网 关系型数据库
PgSQL · 实战经验 · 旋转门压缩算法在PostgreSQL中的实现
背景 在物联网、监控、传感器、金融等应用领域,数据在时间维度上流式的产生,而且数据量非常庞大。 例如我们经常看到的性能监控视图,就是很多点在时间维度上描绘的曲线。 又比如金融行业的走势数据等等。 我们想象一下,如果每个传感器或指标每100毫秒产生1个点,一天就是864000个点。 而传感器或指标是非常多的,例如有100万个传感器或指标,一天的量就接近一亿的量。 假设我们要描绘一个时间
2458 0