用Python/Keras/Flask/Docker在Kubernetes上部署深度学习模型

简介: 简单到老板也可以亲自部署 这篇博文演示了如何通过Docker和Kubernetes,用Keras部署深度学习模型,并且通过Flask提供REST API服务。这个模型并不是强壮到可供生产的模型,而是给Kubernetes新手一个尝试的机会。

简单到老板也可以亲自部署

这篇博文演示了如何通过Docker和Kubernetes,用Keras部署深度学习模型,并且通过Flask提供REST API服务。

这个模型并不是强壮到可供生产的模型,而是给Kubernetes新手一个尝试的机会。我在Google Cloud上部署了这个模型,而且工作的很好。另外用户可以用同样的步骤重现以上功能。如果用户担心成本,Google提供了大量免费机会,这个演示基本没有花钱。

为什么用Kubernetes来做机器学习和数据科学


Kubernetes以及Cloud Native,正在席卷整个世界,我们已经感受到了。我们正处在一个由AI/Big Data/Cloud驱动的技术风暴中心,Kubernetes也正在加入这个中心。

但是如果从数据科学角度看并没有使用Kubernetes的特殊原因。但是从部署,扩展和管理REST API方面来看,Kubernetes正在实现简易化的特性。

步骤预览

  1. 在Google Cloud上创建用户
  2. 使用Keras/Flask/Docker搭建一个REST API的机器学习模型服务
  3. 用Kubernetes部署上述模型
  4. enjoy it

步骤一:在Google Cloud上创建用户

我在Google Compute Engine上创建了一个对外提供服务的容器化深度学习模型,当然Google平台并不是必须的,只要能够安装Docker,随便选择平台模式。
1.png
进入Google云平台,点击左侧屏幕选择Compute Engine,启动Google Cloud VM。然后选择“Create Instance”,可以看到已经运行的实例。
2.png
下一步选择计算资源。默认设置就足够,因为只是演示,我选择了4vCPUs和15G内存。
3.png
选择操作系统和磁盘大小。我选择了CentOS 7,100G硬盘。建议磁盘大于10G,因为每个Docker容器有1G大小。
4.png
最后一步是配置允许HTTP/S工作的防火墙策略。建议选择全部透明,以便减少麻烦。
5.png
选择“Create”,一切进展顺利。
6.png

步骤二:用Keras创建深度学习模型

SSH登录到虚机开始建立模型。最简单方式就是点击虚机下方的SSH图标,会在浏览器中打开一个终端。
7.png
1、删除预装Docker
sudo yum remove docker docker-client docker-client-latest docker-common docker-latest docker-latest-logrotate docker-logrotate docker-selinux docker-engine-selinux docker-engine


2、安装最新Docker版本
sudo yum install -y yum-utils device-mapper-persistent-data lvm2
sudo yum-config-manager — add-repo https://download.docker.com/linux/centos/docker-ce.repo
sudo yum install docker-ce

3、启动容器运行测试脚本
sudo systemctl start docker
sudo docker run hello-world

以下是正确输出:
Hello from Docker!
This message shows that your installation appears to be working correctly.To generate this message, Docker took the following steps: 1. The Docker client contacted the Docker daemon. 2. The Docker daemon pulled the "hello-world" image from the Docker Hub. (amd64) 3. The Docker daemon created a new container from that image which runs the executable that produces the output you are currently reading. 4. The Docker daemon streamed that output to the Docker client, which sent it to your terminal

4、创建深度学习模型
这里会借用Adrian Rosebrock的一个脚本,他提供了使用Keras的深度学习模型并通过Flask提供服务的教程,可以从 这里 访问。

这个模型可以直接执行。但是我修改了两个配置信息:

首先,改变了容器配置,默认flask使用127.0.0....作为默认服务地址,这会在容器内部运行时出现问题。我将它修改成0.0.0.0,这样就可以实现对外和对内都可以工作的IP地址。

第二是关于Tensorflow的配置,可以从GitHub中找到这个 问题描述
global graph
graph = tf.get_default_graph()
...
with graph.as_default():
preds = model.predict(image)

运行脚本,首先创建专用目录:
mkdir keras-app
cd keras-app

创建app.py文件:
vim app.py
# USAGE

Start the server:

python app.py

Submit a request via cURL:

curl -X POST -F image=@dog.jpg 'http://localhost:5000/predict'

import the necessary packages

from keras.applications import ResNet50 from keras.preprocessing.image import img_to_array from keras.applications import imagenet_utils from PIL import Image import numpy as np import flask import io import tensorflow as tf

initialize our Flask application and the Keras model

app = flask.Flask(__name__) model = None def load_model(): # load the pre-trained Keras model (here we are using a model # pre-trained on ImageNet and provided by Keras, but you can # substitute in your own networks just as easily) global model model = ResNet50(weights="imagenet") global graph graph = tf.get_default_graph() def prepare_image(image, target): # if the image mode is not RGB, convert it if image.mode != "RGB": image = image.convert("RGB") # resize the input image and preprocess it image = image.resize(target) image = img_to_array(image) image = np.expand_dims(image, axis=0) image = imagenet_utils.preprocess_input(image) # return the processed image return image @app.route("/predict", methods=["POST"]) def predict(): # initialize the data dictionary that will be returned from the # view data = {"success": False} # ensure an image was properly uploaded to our endpoint if flask.request.method == "POST": if flask.request.files.get("image"): # read the image in PIL format image = flask.request.files["image"].read() image = Image.open(io.BytesIO(image)) # preprocess the image and prepare it for classification image = prepare_image(image, target=(224, 224)) # classify the input image and then initialize the list # of predictions to return to the client with graph.as_default(): preds = model.predict(image) results = imagenet_utils.decode_predictions(preds) data["predictions"] = [] # loop over the results and add them to the list of # returned predictions for (imagenetID, label, prob) in results[0]: r = {"label": label, "probability": float(prob)} data["predictions"].append(r) # indicate that the request was a success data["success"] = True # return the data dictionary as a JSON response return flask.jsonify(data)

if this is the main thread of execution first load the model and

then start the server

if __name__ == "__main__": print(("* Loading Keras model and Flask starting server..." "please wait until server has fully started")) load_model() app.run(host='0.0.0.0')
5、创建requirements.txt文件

为了在容器内运行代码,需要创建requirements.txt文件,其中包括需要运行的包,例如keras、flask、一起其它相关包。这样无论在哪里运行代码,依赖包都保持一致。
keras
tensorflow
flask
gevent
pillow
requests

6、创建Dockerfile
FROM python:3.6
WORKDIR /app
COPY requirements.txt /app
RUN pip install -r ./requirements.txt
COPY app.py /app
CMD ["python", "app.py"]~

首先让容器自行下载Python 3安装image,然后让Python调用pip安装requirements.txt中的依赖包,最后运行python app.py。
7、创建容器
sudo docker build -t keras-app:latest .

在keras-app目录下创建容器,后台开始安装Python 3 image等在步骤6中定义的操作。

8、运行容器
sudo docker run -d -p 5000:5000 keras-app

sudo docker ps -a 检查容器状态,应该看到如下输出:
[gustafcavanaugh@instance-3 ~]$ sudo docker ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
d82f65802166 keras-app "python app.py" About an hour ago Up About an hour 0.0.0.0:5000->5000/tcp nervous_northcutt

9、测试模型

现在可以测试此模型。用狗的照片作为输入,可以返回狗的品种。在Adrian的示例中都有 详细代码和图片 ,我们也使用它们,并保存自工作目录下,命名为dog.jpg。
1_FJWlc5VIb2k5Y64DgMZuww.jpeg
执行命令:
curl -X POST -F image=@dog.jpg 'http://localhost:5000/predict'

应该得到如下输出:
{"predictions":[{"label":"beagle","probability":0.987775444984436},{"label":"pot","probability":0.0020967808086425066},{"label":"Cardigan","probability":0.001351703773252666},{"label":"Walker_hound","probability":0.0012711131712421775},{"label":"Brittany_spaniel","probability":0.0010085132671520114}],"success":true} 

可以看到此模型成功将狗归类为比格犬。下一步,我们用Kubernetes部署容器模型。

第三步:用Kubernetes部署模型

1、创建Docker Hub账号

第一步需要在 Docker hub 上传模型,以便使用Kubernetes集中管理。

2、登录到Docker Hub

sudo docker login , 登录到Docker Hub,应该看到如下输出:
Login Succeeded


3、给容器打标签

给模型容器命名,上传前先给它打标签。

sudo docker images ,应该得到容器的id,输出如下:
REPOSITORY TAG IMAGE ID CREATED SIZE keras-app latest ddb507b8a017 About an hour ago 1.61GB

打标签命令如下:
#Format
sudo docker tag <your image id> <your docker hub id>/<app name>

My Exact Command - Make Sure To Use Your Inputs

sudo docker tag ddb507b8a017 gcav66/keras-app
4、将模型容器上传到Docker Hub

运行命令如下:
#Format
sudo docker push <your docker hub name>/<app-name>

My exact command

sudo docker push gcav66/keras-app
5、创建Kubernetes集群

在Google Cloud Home界面,选择Kubernetes Engine。
8.png
创建新集群:
9.png
选择集群内节点资源,因为要启动三个节点(每个节点4vCPU和15G内存),至少需要12vCPU和45G内存。
10.png
连接集群,Google’s Kubernetes自动会在VM上安装Kubernetes。
11.png
在Kubernetes中运行容器:
kubectl run keras-app --image=gcav66/keras-app --port 5000

确认是否Pod正确运行 kubectl get pods ,输出如下:
gustafcavanaugh@cloudshell:~ (basic-web-app-test)$ kubectl get pods
NAME READY STATUS RESTARTS AGE
keras-app-79568b5f57-5qxqk 1/1 Running 0 1m

为了安全起见,将服务端口暴露与80端口:
kubectl expose deployment keras-app --type=LoadBalancer --port 80 --target-port 5000

确认服务正常启动: kubectl get service ,正常输出如下:
gustafcavanaugh@cloudshell:~ (basic-web-app-test)$ kubectl get service
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
keras-app LoadBalancer 10.11.250.71 35.225.226.94 80:30271/TCP 4m
kubernetes ClusterIP 10.11.240.1 <none> 443/TCP 18m


提取cluster-IP,并将其合并于服务提交命令: curl -X POST -F image=@dog.jpg 'http://&lt;your service IP>/predict' ,得到正常输入如下:
$ curl -X POST -F image=@dog.jpg 'http://35.225.226.94/predict'
{"predictions":[{"label":"beagle","probability":0.987775444984436},{"label":"pot","probability":0.0020967808086425066},{"label":"Cardigan","probability":0.001351703773252666},{"label":"Walker_hound","probability":0.0012711131712421775},{"label":"Brittany_spaniel","probability":0.0010085132671520114}],"success":true} 

第四步:总结

本文提供了一个使用Keras和Flask提供REST API服务的深度学习模型,并把它集成到容器内部,上传到Docker Hub,并用Kubernetes部署,非常容易地实现了对外提供服务和访问。

现在,我们可以对这个项目进行很多改进。对于初学者,可以改变本地Python服务到更加强壮的gunicorn;可以横向扩展Kubernetes,实现服务扩容;也可以从头搭建一套Kubernetes环境。

本文转自DockOne-用Python/Keras/Flask/Docker在Kubernetes上部署深度学习模型

相关实践学习
容器服务Serverless版ACK Serverless 快速入门:在线魔方应用部署和监控
通过本实验,您将了解到容器服务Serverless版ACK Serverless 的基本产品能力,即可以实现快速部署一个在线魔方应用,并借助阿里云容器服务成熟的产品生态,实现在线应用的企业级监控,提升应用稳定性。
云原生实践公开课
课程大纲 开篇:如何学习并实践云原生技术 基础篇: 5 步上手 Kubernetes 进阶篇:生产环境下的 K8s 实践 相关的阿里云产品:容器服务&nbsp;ACK 容器服务&nbsp;Kubernetes&nbsp;版(简称&nbsp;ACK)提供高性能可伸缩的容器应用管理能力,支持企业级容器化应用的全生命周期管理。整合阿里云虚拟化、存储、网络和安全能力,打造云端最佳容器化应用运行环境。 了解产品详情:&nbsp;https://www.aliyun.com/product/kubernetes
相关文章
|
3天前
|
Kubernetes Cloud Native 开发者
构建高效的云原生应用:Docker与Kubernetes的完美搭档
【5月更文挑战第29天】 在现代软件开发领域,"云原生"这一术语已经成为高效、可扩展和弹性的代名词。本文将深入探讨如何通过Docker容器化技术和Kubernetes集群管理工具实现云原生应用的构建和管理。我们将剖析Docker的核心原理,揭示其轻量级和易于部署的特点,并进一步探索Kubernetes如何为这些容器提供编排,保证应用的高可用性与自动扩缩容。文章不仅讨论了二者的技术细节,还提供了实践案例,帮助开发者理解并运用这些技术构建和维护自己的云原生应用。
|
10天前
|
应用服务中间件 nginx Docker
使用 Python Flask 创建简易文件上传服务
在平时工作中,文件上传是一项常见的需求,例如将应用异常时通过脚本生成的dump文件收集起来进行分析,但实现起来却可能相当复杂。幸运的是,Flask框架提供了一种简单而高效的方式来处理文件上传,代码不到100行。在本文中,我们将探讨如何使用Flask实现文件上传功能,编写Dockerfile将应用程序通过docker部署。
|
1天前
|
Kubernetes 开发者 Docker
构建高效微服务架构:Docker与Kubernetes的协同应用
【5月更文挑战第30天】 在当今软件开发领域,微服务架构已成为实现系统模块化、提升可维护性及扩展性的关键策略。本文深入探讨了如何通过Docker容器化技术和Kubernetes集群管理,共同构建一个既高效又可靠的后端微服务环境。我们将剖析Docker和Kubernetes的核心功能,以及它们如何相辅相成,支撑起现代化的云原生应用程序部署和管理。文章还将提供具体实践案例,帮助开发者理解将理论应用于实际开发过程中的步骤和考虑因素。
|
2天前
|
运维 Kubernetes 持续交付
构建高效自动化运维体系:基于Docker和Kubernetes的实践
【5月更文挑战第30天】 在当今的快速迭代和持续部署的软件发布环境中,自动化运维的重要性愈发凸显。本文旨在探讨如何利用容器化技术与微服务架构,特别是Docker和Kubernetes,来构建一个高效、可伸缩且自愈的自动化运维体系。通过详细分析容器化的优势及Kubernetes的集群管理机制,文章将提供一个清晰的指南,帮助读者理解并实现现代软件部署的最佳实践。
|
3天前
|
运维 Kubernetes 监控
构建高效自动化运维体系:基于Docker和Kubernetes的实践指南
【5月更文挑战第29天】 在现代云计算环境中,自动化运维已成为提升服务效率、确保系统稳定性的关键因素。本文深入探讨了如何利用Docker容器化技术和Kubernetes集群管理工具来构建一个高效且灵活的自动化运维体系。通过分析具体实施步骤和策略,我们旨在为读者提供一个清晰的指导框架,以支持他们在不断变化的技术需求中快速部署和扩展应用程序。本指南不仅涉及技术的基础知识,还涵盖了持续集成/持续部署(CI/CD)流程的集成,以及监控和日志管理的优化实践。
|
3天前
|
运维 Kubernetes 监控
构建高效自动化运维系统:基于Docker和Kubernetes的实践
【5月更文挑战第28天】在现代云计算环境中,自动化运维已成为提升服务效率、减少人为错误和应对快速变化需求的关键。本文以实际案例为依托,详细探讨了如何利用Docker容器化技术和Kubernetes集群管理系统搭建一套高效的自动化运维平台。通过深入分析Docker的轻量级虚拟化特性及Kubernetes的编排能力,本文展示了从基础设施搭建到持续集成、部署和监控的全自动化流程,旨在为运维工程师提供一种提高生产力、降低运营成本的可行解决方案。
|
4天前
|
应用服务中间件 API nginx
使用Python和Flask构建RESTful Web API
使用Python和Flask构建RESTful Web API
14 0
|
4天前
|
存储 数据库连接 数据安全/隐私保护
使用Python和Flask构建一个简单的Web博客应用
使用Python和Flask构建一个简单的Web博客应用
12 0
|
4天前
|
Kubernetes 持续交付 Docker
构建高效微服务架构:Docker与Kubernetes的完美结合
【5月更文挑战第28天】在现代软件开发中,微服务架构已成为提高系统可维护性和扩展性的关键。本文深入探讨了如何利用Docker容器化技术和Kubernetes集群管理工具共同打造一个高效、可靠的微服务环境。通过分析两者的核心优势及互补特性,我们展示了一种优化的部署策略,旨在帮助开发者和系统管理员理解和实践在复杂分布式系统中实现服务的有效管理和自动化部署。
|
9天前
|
Kubernetes 调度 Docker
Ubantu docker学习笔记(十一)k8s基本操作
Ubantu docker学习笔记(十一)k8s基本操作